Оценка суммы степеней расстояний между вычетами по простому модулю
Čebyševskij sbornik, Tome 13 (2012) no. 2, pp. 77-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{CHEB_2012_13_2_a10,
     author = {D. E. Kovalevskii},
     title = {{\CYRO}{\cyrc}{\cyre}{\cyrn}{\cyrk}{\cyra} {\cyrs}{\cyru}{\cyrm}{\cyrm}{\cyrery} {\cyrs}{\cyrt}{\cyre}{\cyrp}{\cyre}{\cyrn}{\cyre}{\cyrishrt} {\cyrr}{\cyra}{\cyrs}{\cyrs}{\cyrt}{\cyro}{\cyrya}{\cyrn}{\cyri}{\cyrishrt} {\cyrm}{\cyre}{\cyrzh}{\cyrd}{\cyru} {\cyrv}{\cyrery}{\cyrch}{\cyre}{\cyrt}{\cyra}{\cyrm}{\cyri} {\cyrp}{\cyro} {\cyrp}{\cyrr}{\cyro}{\cyrs}{\cyrt}{\cyro}{\cyrm}{\cyru} {\cyrm}{\cyro}{\cyrd}{\cyru}{\cyrl}{\cyryu}},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {77--85},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2012_13_2_a10/}
}
TY  - JOUR
AU  - D. E. Kovalevskii
TI  - Оценка суммы степеней расстояний между вычетами по простому модулю
JO  - Čebyševskij sbornik
PY  - 2012
SP  - 77
EP  - 85
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2012_13_2_a10/
LA  - ru
ID  - CHEB_2012_13_2_a10
ER  - 
%0 Journal Article
%A D. E. Kovalevskii
%T Оценка суммы степеней расстояний между вычетами по простому модулю
%J Čebyševskij sbornik
%D 2012
%P 77-85
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2012_13_2_a10/
%G ru
%F CHEB_2012_13_2_a10
D. E. Kovalevskii. Оценка суммы степеней расстояний между вычетами по простому модулю. Čebyševskij sbornik, Tome 13 (2012) no. 2, pp. 77-85. http://geodesic.mathdoc.fr/item/CHEB_2012_13_2_a10/

[1] Yu. V. Malykhin, Zadacha Arnolda dlya malykh podgrupp, preprint

[2] M. Z. Garaev, S. V. Konyagin, Yu. V. Malykhin, “Asimptotika summy rasstoyanii mezhdu stepennymi vychetami po prostomu modulyu”, Trudy Matematicheskogo Instituta imeni V. A. Steklova, 276, 2012, 1–13 | MR

[3] I. E. Shparlinski, Wolfgang Steiner, On digit patterns in expansions of rational numbers with prime denominator, preprint

[4] J. Bourgain, S. V. Konyagin, I. E. Shparlinski, “Product set of rationals, multiplicative translates of subgroups in residue rings and fixed points of the discrete logarithm”, Article ID rnn09, Intern. Math. Research Notices, 2008, 1–29 ; “Corrigenda to: Product set of rationals, multiplicative translates of subgroups in residue rings and fixed points of the discrete”, Intern. Math. Res. Notices, 2009, 3146–3147 | MR | MR

[5] S. V. Konyagin, I. E. Shparlinski, Character sums with exponential functions and their applications, Cambridge Univ. Press, Cambridge, 1999 | MR

[6] D. R. Heath-Brown, S. V. Konyagin, “New bounds for Gauss sums derived from $k$th powers, and for Heilbronn's exponential sum”, Quart. J. Math., 51 (2000), 221–235 | DOI | MR | Zbl

[7] H. Iwaniec, E. Kowalski, Analytic number theory, American Mathematical Society, Providence, RI, 2004 | MR | Zbl

[8] Arnold V. I., Gruppy Eilera i arifmetika geometricheskikh progressii, MTsNMO, M., 2003

[9] F. Pappalardi, “On the Order of Finitely Generated Subgroups of $\mathbb{Q}^*\pmod p$ and Divisors of $p-1$”, J. Number Theory, 57 (1996), 207–222 | DOI | MR | Zbl