Полукольца с условиями идемпотентности
Čebyševskij sbornik, Tome 13 (2012) no. 1, pp. 118-129
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{CHEB_2012_13_1_a13,
author = {A. A. Petrov},
title = {{\CYRP}{\cyro}{\cyrl}{\cyru}{\cyrk}{\cyro}{\cyrl}{\cyrsftsn}{\cyrc}{\cyra} {\cyrs} {\cyru}{\cyrs}{\cyrl}{\cyro}{\cyrv}{\cyri}{\cyrya}{\cyrm}{\cyri} {\cyri}{\cyrd}{\cyre}{\cyrm}{\cyrp}{\cyro}{\cyrt}{\cyre}{\cyrn}{\cyrt}{\cyrn}{\cyro}{\cyrs}{\cyrt}{\cyri}},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {118--129},
year = {2012},
volume = {13},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2012_13_1_a13/}
}
A. A. Petrov. Полукольца с условиями идемпотентности. Čebyševskij sbornik, Tome 13 (2012) no. 1, pp. 118-129. http://geodesic.mathdoc.fr/item/CHEB_2012_13_1_a13/
[1] Vechtomov E. M., Petrov A. A., “Polukoltsa s idempotentnym umnozheniem”, Vestnik Syktyvkarskogo universiteta. Seriya 1: Matematika. Mekhanika. Informatika, 2011, no. 14, 21–32
[2] Grettser G., Obschaya teoriya reshetok, Mir, M., 1982, 456 pp. | MR
[3] McKenzie R., Romanowska A., “Varieties of $\wedge$-distributive bisemilattices”, Contrib. Gen. Algebra, Proc. Klagefurt Conf., Klagefurt, 1978, 213–218 | MR