On the virtual residuality a finite $p$-groups of descending HNN-extension
Čebyševskij sbornik, Tome 13 (2012) no. 1, pp. 9-19
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $G$ be a group of finite general rank. And let $H$ be a finite index subgroup in $G$. Let $G(\varphi)$ be a descending HNN-extension, corresponding to isomorphism $\varphi : G \rightarrow H $. It is proved that if $G$ is virtually residually a finite $p$-group for any prime $p > [G:H]$, then $G(\varphi)$ is virtually residually a finite $p$-group. As a corollary a new proof of the known theorems is obtained.
@article{CHEB_2012_13_1_a1,
author = {D. N. Azarov},
title = {On the virtual residuality a finite $p$-groups of descending {HNN-extension}},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {9--19},
publisher = {mathdoc},
volume = {13},
number = {1},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2012_13_1_a1/}
}
D. N. Azarov. On the virtual residuality a finite $p$-groups of descending HNN-extension. Čebyševskij sbornik, Tome 13 (2012) no. 1, pp. 9-19. http://geodesic.mathdoc.fr/item/CHEB_2012_13_1_a1/