On the virtual residuality a finite $p$-groups of descending HNN-extension
Čebyševskij sbornik, Tome 13 (2012) no. 1, pp. 9-19

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a group of finite general rank. And let $H$ be a finite index subgroup in $G$. Let $G(\varphi)$ be a descending HNN-extension, corresponding to isomorphism $\varphi : G \rightarrow H $. It is proved that if $G$ is virtually residually a finite $p$-group for any prime $p > [G:H]$, then $G(\varphi)$ is virtually residually a finite $p$-group. As a corollary a new proof of the known theorems is obtained.
@article{CHEB_2012_13_1_a1,
     author = {D. N. Azarov},
     title = {On the virtual residuality a finite $p$-groups of descending {HNN-extension}},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {9--19},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2012_13_1_a1/}
}
TY  - JOUR
AU  - D. N. Azarov
TI  - On the virtual residuality a finite $p$-groups of descending HNN-extension
JO  - Čebyševskij sbornik
PY  - 2012
SP  - 9
EP  - 19
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2012_13_1_a1/
LA  - ru
ID  - CHEB_2012_13_1_a1
ER  - 
%0 Journal Article
%A D. N. Azarov
%T On the virtual residuality a finite $p$-groups of descending HNN-extension
%J Čebyševskij sbornik
%D 2012
%P 9-19
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2012_13_1_a1/
%G ru
%F CHEB_2012_13_1_a1
D. N. Azarov. On the virtual residuality a finite $p$-groups of descending HNN-extension. Čebyševskij sbornik, Tome 13 (2012) no. 1, pp. 9-19. http://geodesic.mathdoc.fr/item/CHEB_2012_13_1_a1/