On the virtual residuality a finite $p$-groups of descending HNN-extension
Čebyševskij sbornik, Tome 13 (2012) no. 1, pp. 9-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a group of finite general rank. And let $H$ be a finite index subgroup in $G$. Let $G(\varphi)$ be a descending HNN-extension, corresponding to isomorphism $\varphi : G \rightarrow H $. It is proved that if $G$ is virtually residually a finite $p$-group for any prime $p > [G:H]$, then $G(\varphi)$ is virtually residually a finite $p$-group. As a corollary a new proof of the known theorems is obtained.
@article{CHEB_2012_13_1_a1,
     author = {D. N. Azarov},
     title = {On the virtual residuality a finite $p$-groups of descending {HNN-extension}},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {9--19},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2012_13_1_a1/}
}
TY  - JOUR
AU  - D. N. Azarov
TI  - On the virtual residuality a finite $p$-groups of descending HNN-extension
JO  - Čebyševskij sbornik
PY  - 2012
SP  - 9
EP  - 19
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2012_13_1_a1/
LA  - ru
ID  - CHEB_2012_13_1_a1
ER  - 
%0 Journal Article
%A D. N. Azarov
%T On the virtual residuality a finite $p$-groups of descending HNN-extension
%J Čebyševskij sbornik
%D 2012
%P 9-19
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2012_13_1_a1/
%G ru
%F CHEB_2012_13_1_a1
D. N. Azarov. On the virtual residuality a finite $p$-groups of descending HNN-extension. Čebyševskij sbornik, Tome 13 (2012) no. 1, pp. 9-19. http://geodesic.mathdoc.fr/item/CHEB_2012_13_1_a1/

[1] Baumslag G., Solitar D., “Some two-generator one-relator non-Hopfian groups”, Bull. Amer. Math. Soc., 68 (1962), 199–201 | DOI | MR | Zbl

[2] Moldavanskii D. I., “Approksimiruemost konechnymi p-gruppami HNN-rasshirenii”, Vestnik Ivan. gos. un-ta, 2000, no. 3, 129-140

[3] Azarov D. N., Sergina E. A., “O pochti approksimiruemosti konechnymi r-gruppami nekotorykh grupp Baumslaga–Solitera”, Nauchn. tr. Ivan. gos un-ta. Matematika, 2008, no. 6, 21–28

[4] Hsu T., Wise D., “Ascending HNN-extensions of polycyclic groups are residually finite”, J. Pure Appl. Algebra, 182:1 (2003), 65–78 | DOI | MR | Zbl

[5] Baumslag G., Bieri R., “Constructable soluble groups”, Math. Z., 151 (1976), 249–267 | DOI | MR

[6] Lennox J., Robinson D., The theory of infinite soluble groups, Clarendon press, Oxford, 2004 | MR | Zbl

[7] Borisov A., Sapir M., Polynomial maps over finite fields and residual finiteness of mapping tori of group endomorphisms, arXiv: math.2003.0309121V1[math. GR] | MR

[8] Rhemtulla A. H., Shirvani M., “The residual finiteness of ascending HNN-extensions of certain solyble groups”, Illions J. of Math., 47 (2003), 477–484 | MR | Zbl

[9] Shmelkin A. L., Politsiklicheskie gruppy, Sib. mat. zh., 9, 1968

[10] Lubotzky A., Segal D., Subgroup growth. Progress in Mathematics, v. 212, Birkhauser verlag., Basel, 2003 | MR | Zbl

[11] Gruenberg K. W., “Residual properties of infinite soluble groups”, Proc. London Math. Soc., 7 (1957), 29–62 | DOI | MR | Zbl

[12] Kargapolov M. I., Merzlyakov Yu. I., Osnovy teorii grupp, Nauka, M., 1972 | MR | Zbl

[13] Azarov D. N., “O pochti approksimiruemosti konechnymi r-gruppami”, Chebyshevskii sbornik, 11:3(35) (2010), 11–21