Limit theorems for the Estermann zeta function. III
Čebyševskij sbornik, Tome 12 (2011) no. 4, pp. 97-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

A joint limit theorem in the sense of the weak convergence of probability measures on the complex plane for Estermann zeta-functions is obtained.
@article{CHEB_2011_12_4_a9,
     author = {A. Laurin\v{c}ikas and D. \v{S}iau\v{c}i\={u}nas},
     title = {Limit theorems for the {Estermann} zeta function. {III}},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {97--108},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2011_12_4_a9/}
}
TY  - JOUR
AU  - A. Laurinčikas
AU  - D. Šiaučiūnas
TI  - Limit theorems for the Estermann zeta function. III
JO  - Čebyševskij sbornik
PY  - 2011
SP  - 97
EP  - 108
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2011_12_4_a9/
LA  - en
ID  - CHEB_2011_12_4_a9
ER  - 
%0 Journal Article
%A A. Laurinčikas
%A D. Šiaučiūnas
%T Limit theorems for the Estermann zeta function. III
%J Čebyševskij sbornik
%D 2011
%P 97-108
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2011_12_4_a9/
%G en
%F CHEB_2011_12_4_a9
A. Laurinčikas; D. Šiaučiūnas. Limit theorems for the Estermann zeta function. III. Čebyševskij sbornik, Tome 12 (2011) no. 4, pp. 97-108. http://geodesic.mathdoc.fr/item/CHEB_2011_12_4_a9/

[1] Billingsley P., Convergence of Probability Measures, Wiley, New York, 1968 | MR | Zbl

[2] Laurinčikas A., Limit Theorems for the Riemann Zeta-Function, Kluwer Academic Publishers, Dordrecht–Boston–London, 1996 | MR

[3] Laurinčikas A., “Limit theorems for the Estermann zeta-function, I”, Statist. Probab. Letters, 72:3 (2005), 227–235 | DOI | MR | Zbl

[4] Laurinčikas A., “Limit theorems for the Estermann zeta-function, II”, CEJM, 3:4 (2005), 580–590 | MR | Zbl

[5] Prokhorov Yu. V., “Convergence of random processes and limit theorems of probability theory”, Probab. Theory and Appl., 1:2 (1956), 177–238 (in Russian) | MR | Zbl