A spectrum associated with Minkowski diagonal continued fraction
Čebyševskij sbornik, Tome 12 (2011) no. 4, pp. 33-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{CHEB_2011_12_4_a3,
     author = {Alena Aleksenko},
     title = {A spectrum associated with {Minkowski} diagonal continued fraction},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {33--38},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2011_12_4_a3/}
}
TY  - JOUR
AU  - Alena Aleksenko
TI  - A spectrum associated with Minkowski diagonal continued fraction
JO  - Čebyševskij sbornik
PY  - 2011
SP  - 33
EP  - 38
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2011_12_4_a3/
LA  - en
ID  - CHEB_2011_12_4_a3
ER  - 
%0 Journal Article
%A Alena Aleksenko
%T A spectrum associated with Minkowski diagonal continued fraction
%J Čebyševskij sbornik
%D 2011
%P 33-38
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2011_12_4_a3/
%G en
%F CHEB_2011_12_4_a3
Alena Aleksenko. A spectrum associated with Minkowski diagonal continued fraction. Čebyševskij sbornik, Tome 12 (2011) no. 4, pp. 33-38. http://geodesic.mathdoc.fr/item/CHEB_2011_12_4_a3/

[1] S. Astels, “Cantor sets and numbers with restricted partial quotients”, Trans. Amer. Math. Soc., 352:1 (1999), 133–170 | DOI | MR

[2] M. Hall (jr.), “On the sum and product of continued fractions”, Annales of Mathematics, 48:4 (1947), 966–993 | DOI | MR | Zbl

[3] I. D. Kan, N. G. Moshchevitin, J. Chaika, “On Minkowski diagonal functions for two real numbers”, The Proceedings Diophantine Analysis and Related Fields 2011, AIP Conf. Proc., 1385, eds. M. Amou, M. Katsurada, American Institute of Physics, New York, 2011, 42–48 | DOI

[4] H. Minkowski, “Über die Annäherung an eine reelle Grösse durch rationale Zahlen”, Math. Ann., 54 (1901), 91–124 | DOI | MR | Zbl

[5] N. G. Moshchevitin, “On a theorem of M. Hall”, Russian Mathematical Surveys, 52:6 (1997), 1312–1313 | DOI | MR | Zbl

[6] N. G. Moshchevitin, “On Minkowski diagonal continued fraction”, Anal. Probab. Methods Nubmer Theory, Proceedings of the conference (Palanga, Sept. 2011), eds. E. Manstavi$\breve{\rm c}$ius et al., 2012, arXiv: 1202.4622v2

[7] P. A. Pisarev, “On the set of numbers representable as continued fractions with bounded partial quotients”, Russian Mathematical Surveys, 55:5 (2000), 998–999 | DOI | MR | Zbl