Diophantine sequences containing an infinite number of primes
Čebyševskij sbornik, Tome 12 (2011) no. 3, pp. 61-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{CHEB_2011_12_3_a5,
     author = {I. I. Il'yasov},
     title = {Diophantine sequences containing an infinite number of primes},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {61--63},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2011_12_3_a5/}
}
TY  - JOUR
AU  - I. I. Il'yasov
TI  - Diophantine sequences containing an infinite number of primes
JO  - Čebyševskij sbornik
PY  - 2011
SP  - 61
EP  - 63
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2011_12_3_a5/
LA  - ru
ID  - CHEB_2011_12_3_a5
ER  - 
%0 Journal Article
%A I. I. Il'yasov
%T Diophantine sequences containing an infinite number of primes
%J Čebyševskij sbornik
%D 2011
%P 61-63
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2011_12_3_a5/
%G ru
%F CHEB_2011_12_3_a5
I. I. Il'yasov. Diophantine sequences containing an infinite number of primes. Čebyševskij sbornik, Tome 12 (2011) no. 3, pp. 61-63. http://geodesic.mathdoc.fr/item/CHEB_2011_12_3_a5/

[1] Vinogradov I. M., “Raspredelenie drobnykh chastei znachenii funktsii $\theta p$”, Izbrannye trudy, Izdatelstvo AN SSSR, M., 1952, 329–330 | MR

[2] Khua Lo-gen, “Raspredelenie odnoi funktsii, argument kotoroi probegaet posledovatelnost prostykh chisel”, Metod trigonometricheskikh summ i ego primeneniya v teorii chisel, Mir, M., 1964, 145–146 | MR

[3] Gelfond A. O., Linnik Yu. V., “O prostykh chislakh v posledovatelnostyakh neskolko bolee obschikh, chem progressii”, Elementarnye metody v analiticheskoi teorii chisel, Izdatelstvo fiz–mat. literatury, M., 1962, 89–96

[4] Ilyasov I. I., “O strukture posledovatelnosti $\left\{n\theta\right\}$”, Teoriya neregulyarnykh krivykh v razlichnykh geometricheskikh prostranstvakh, Alma–Ata, 1979, 44–48 | MR