Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2011_12_3_a5, author = {I. I. Il'yasov}, title = {Diophantine sequences containing an infinite number of primes}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {61--63}, publisher = {mathdoc}, volume = {12}, number = {3}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2011_12_3_a5/} }
I. I. Il'yasov. Diophantine sequences containing an infinite number of primes. Čebyševskij sbornik, Tome 12 (2011) no. 3, pp. 61-63. http://geodesic.mathdoc.fr/item/CHEB_2011_12_3_a5/
[1] Vinogradov I. M., “Raspredelenie drobnykh chastei znachenii funktsii $\theta p$”, Izbrannye trudy, Izdatelstvo AN SSSR, M., 1952, 329–330 | MR
[2] Khua Lo-gen, “Raspredelenie odnoi funktsii, argument kotoroi probegaet posledovatelnost prostykh chisel”, Metod trigonometricheskikh summ i ego primeneniya v teorii chisel, Mir, M., 1964, 145–146 | MR
[3] Gelfond A. O., Linnik Yu. V., “O prostykh chislakh v posledovatelnostyakh neskolko bolee obschikh, chem progressii”, Elementarnye metody v analiticheskoi teorii chisel, Izdatelstvo fiz–mat. literatury, M., 1962, 89–96
[4] Ilyasov I. I., “O strukture posledovatelnosti $\left\{n\theta\right\}$”, Teoriya neregulyarnykh krivykh v razlichnykh geometricheskikh prostranstvakh, Alma–Ata, 1979, 44–48 | MR