Singularly perturbed partially dissipative reaction-diffusion systems in the case of intersecting roots of the degenerate equation
Čebyševskij sbornik, Tome 12 (2011) no. 3, pp. 22-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{CHEB_2011_12_3_a2,
     author = {V. F. Butuzov and A. V. Kostin},
     title = {Singularly perturbed partially dissipative reaction-diffusion systems in the case of intersecting roots of the degenerate equation},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {22--44},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2011_12_3_a2/}
}
TY  - JOUR
AU  - V. F. Butuzov
AU  - A. V. Kostin
TI  - Singularly perturbed partially dissipative reaction-diffusion systems in the case of intersecting roots of the degenerate equation
JO  - Čebyševskij sbornik
PY  - 2011
SP  - 22
EP  - 44
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2011_12_3_a2/
LA  - ru
ID  - CHEB_2011_12_3_a2
ER  - 
%0 Journal Article
%A V. F. Butuzov
%A A. V. Kostin
%T Singularly perturbed partially dissipative reaction-diffusion systems in the case of intersecting roots of the degenerate equation
%J Čebyševskij sbornik
%D 2011
%P 22-44
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2011_12_3_a2/
%G ru
%F CHEB_2011_12_3_a2
V. F. Butuzov; A. V. Kostin. Singularly perturbed partially dissipative reaction-diffusion systems in the case of intersecting roots of the degenerate equation. Čebyševskij sbornik, Tome 12 (2011) no. 3, pp. 22-44. http://geodesic.mathdoc.fr/item/CHEB_2011_12_3_a2/

[1] Marion M., “Inertial manifolds associated with partly dissipative reaction-diffusion systems”, J. Math. Anal. Appl., 143 (1989), 295–326 | DOI | MR | Zbl

[2] Fabrie P., Galusinski C., “Exponential attractors for a partially dissipative reaction system”, Asymptotic Anal., 12 (1996), 329–354 | MR | Zbl

[3] Hollis S. L., Morgan J. J., “Partly dissipative reaction-diffusion systems and a model of phosphorus diffusion in silicon”, Nonlinear Anal. Theory Methods Appl., 19 (1992), 427–440 | DOI | MR | Zbl

[4] Butuzov V. F., Nefedov N. N., Schneider K. R., Singularly perturbed partly dissipative reaction-diffusion systems in case of exchange of stabilities, Preprint No 572, Weierstras–Institut fur Angewandte Analysis und Stochastik, Berlin, 2000 | MR

[5] Kostin A. V., “O singulyarno vozmuschennoi chastichno dissipativnoi sisteme reaktsii-diffuzii v sluchae smeny ustoichivosti”, Matematicheskie metody i prilozheniya, Trudy dvadtsatykh matematicheskikh chtenii RGSU, RGSU, M., 2011, 57–67

[6] Vasileva A. B., Butuzov V. F., Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Vysshaya shkola, M., 1990 | MR

[7] Butuzov V. F., “Ob ustoichivosti i oblasti prityazheniya negladkogo v predele statsionarnogo resheniya singulyarno vozmuschennogo parabolicheskogo uravneniya”, Zh. vychisl. matem. i matem. fiz., 46:3 (2006), 433–444 | MR | Zbl

[8] Pao C. V., Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York–London, 1992 | MR