The free abelian $n$-ary groups defined by the cyclic groups
Čebyševskij sbornik, Tome 12 (2011) no. 2, pp. 68-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a complete description of the $n$-ary groups, which are free in the class of abelian $n$-ary groups defined by the cyclic groups and their automorphism groups.
@article{CHEB_2011_12_2_a8,
     author = {V. M. Kusov and N. A. Shchuchkin},
     title = {The free abelian $n$-ary groups defined by the cyclic groups},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {68--76},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2011_12_2_a8/}
}
TY  - JOUR
AU  - V. M. Kusov
AU  - N. A. Shchuchkin
TI  - The free abelian $n$-ary groups defined by the cyclic groups
JO  - Čebyševskij sbornik
PY  - 2011
SP  - 68
EP  - 76
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2011_12_2_a8/
LA  - ru
ID  - CHEB_2011_12_2_a8
ER  - 
%0 Journal Article
%A V. M. Kusov
%A N. A. Shchuchkin
%T The free abelian $n$-ary groups defined by the cyclic groups
%J Čebyševskij sbornik
%D 2011
%P 68-76
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2011_12_2_a8/
%G ru
%F CHEB_2011_12_2_a8
V. M. Kusov; N. A. Shchuchkin. The free abelian $n$-ary groups defined by the cyclic groups. Čebyševskij sbornik, Tome 12 (2011) no. 2, pp. 68-76. http://geodesic.mathdoc.fr/item/CHEB_2011_12_2_a8/

[1] Glazek K., Michalski J., Sierocki I., “On evaluation of some polyadic groups”, Contributions to general algebra, 3, Verlag Hölder-Pichler-Tempsky, Wiena, 1985, 157–171 | MR

[2] N. A. Schuchkin, “Polutsiklicheskie $n$-arnye gruppy”, Izvestiya GGU im. F. Skoriny, 2009, no. 3(54), 186–194

[3] Post E. L., “Poluadic groups”, Trans. Amer. Math. Soc., 48 (1940), 208–350 | DOI | MR

[4] Rusakov S. A., Algebraicheskie $n$-arnye sistemy, Navuka i tekhnika, Minsk, 1992

[5] Galmak A. M., $n$-Arnye gruppy, v. I, Gomelskii gos. universitet im. F. Skoriny, Gomel, 2003

[6] Dudek W. A., Glasek K., Gleichgewicht B., “A note on the axioms of $n$-groups”, Universal Algebra (Esztergom, Hungaru, 1977), Colloquia Math. Soc. J. Bolyai, 29, North-Holland, Amsterdam, 1982, 195–202 | MR

[7] Dudek W. A., “Remarks on $n$-groups”, Demonstratio Math., 13 (1980), 165–181 | MR | Zbl

[8] Gal'mak A. M., “Remarks on polyadic groups”, Quasigroups and Related Systems, 7 (2000), 67–71 | MR

[9] Gleichgewicht B., Glasek K., “Remarks on $n$-groups as abstract algebras”, Coll. Math., 17 (1967), 209–219 | MR | Zbl

[10] Galmak A. M., Kongruentsii poliadicheskikh grupp, Belaruskaya navuka, Minsk, 1999

[11] Artamonov V. A., Podgruppy svobodnykh grupp i svobodnykh proizvedenii grupp v nekotorykh klassakh obobschennykh grupp, Dissertatsiya na soiskanie uch. st. kand. fiz.-mat. nauk, Moskva, 1970

[12] Gluskin L. M., “Pozitsionnye operativy”, Mat. sbornik, 68(110):3 (1965), 444–472 | MR | Zbl

[13] Hosszu M., “On the explicit form of $n$-group operacions”, Publ. Math., 10:1–4 (1963), 88–92 | MR

[14] Dudek W. A., Michalski J., “On retrakts of polyadic groups”, Demonstratio Math., 17 (1984), 281–301 | MR | Zbl

[15] Dudec W. A., Shchuchkin N. A., “Skew endomorphisms on some $n$-ary groups”, Quasigroups and Related Systems, 17:2 (2009), 205–228 | MR