A fast algorithm for checking the degeneracy of Hankel matrices
Čebyševskij sbornik, Tome 12 (2011) no. 2, pp. 60-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{CHEB_2011_12_2_a7,
     author = {Yu. V. Kuznetsov and M. M. Petrunin},
     title = {A fast algorithm for checking the degeneracy of {Hankel} matrices},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {60--67},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2011_12_2_a7/}
}
TY  - JOUR
AU  - Yu. V. Kuznetsov
AU  - M. M. Petrunin
TI  - A fast algorithm for checking the degeneracy of Hankel matrices
JO  - Čebyševskij sbornik
PY  - 2011
SP  - 60
EP  - 67
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2011_12_2_a7/
LA  - ru
ID  - CHEB_2011_12_2_a7
ER  - 
%0 Journal Article
%A Yu. V. Kuznetsov
%A M. M. Petrunin
%T A fast algorithm for checking the degeneracy of Hankel matrices
%J Čebyševskij sbornik
%D 2011
%P 60-67
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2011_12_2_a7/
%G ru
%F CHEB_2011_12_2_a7
Yu. V. Kuznetsov; M. M. Petrunin. A fast algorithm for checking the degeneracy of Hankel matrices. Čebyševskij sbornik, Tome 12 (2011) no. 2, pp. 60-67. http://geodesic.mathdoc.fr/item/CHEB_2011_12_2_a7/

[1] V. P. Platonov, V. V. Benyash-Krivets, “Gruppy S-edinits v giperellipticheskikh polyakh i nepreryvnye drobi”, Matem. sb., 200:11 (2009), 15–44 | MR | Zbl

[2] V. P. Platonov, “Arifmetika kvadratichnykh polei i kruchenie v yakobianakh”, Doklady Akademii Nauk, 430:3 (2010), 318–320 | MR | Zbl

[3] V. P. Platonov, V. V. Benyash-Krivets, “O novom lokalno-globalnom printsipe dlya kvadratichnykh funktsionalnykh polei”, Doklady Akademii Nauk, 433:2 (2010), 154–157 | MR | Zbl

[4] Tyrtyshnikov E. E., “Fast algorithms for toeplitz and quasi-toeplitz systems”, J. Numer. Anal. Math. Modelling, 4:5 (1989), 419–430 | MR | Zbl

[5] Aho A. V., Hopcroft J. E., Ullman J. D., The design and analysis of computer algorithms, Addison-Wesley, Reading, Mass., 1976 | MR

[6] Richard P. Brent, Fred G. Gustavson, David Y. Y. Yun, “Fast solution of Toeplitz systems of equations and computation of Pade approximants”, Journal of Algorithms, 1 (1980), 259–295 ; http://www.web.comlab.ox.ac.uk/oucl/work/richard.brent/pub/pub059.html | DOI | MR | Zbl

[7] K. Thull, C. Yap, A unified approach to HGCD algorithms for polynomials and integers, Manuscript, , 1990 http://www.cs.nyu.edu/cs/faculty/yap/allpapers.html/

[8] I. S. Sergeev, “Bystrye algoritmy dlya elementarnykh operatsii s kompleksnymi stepennymi ryadami”, Diskretnaya matematika, 22:1 (2010), 17–49 | DOI | MR | Zbl

[9] Tyrtyshnikov E. E., “Metod skachkov i approksimatsii Pade”, Chislennye metody, parallelnye vychisleniya i informatsionnye tekhnologii, 2008, 277–289; http://www.parallel.ru/info/VVV/18.pdf

[10] Bernstein D. J., “Fast multiplication and its applications”, Algorithmic Number Theory. Lattices, Number Fields, Curves and Cryptography, Mathematical Sciences Research Institute Publications, 44, eds. Buhler J. P. et al., Cambridge, 2008, 325–384 | MR | Zbl