@article{CHEB_2011_12_2_a5,
author = {E. V. Korobchenko},
title = {$n${-Connected} tolerant quasibundles and {Hurewicz} theorems for tolerant spaces},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {39--53},
year = {2011},
volume = {12},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2011_12_2_a5/}
}
E. V. Korobchenko. $n$-Connected tolerant quasibundles and Hurewicz theorems for tolerant spaces. Čebyševskij sbornik, Tome 12 (2011) no. 2, pp. 39-53. http://geodesic.mathdoc.fr/item/CHEB_2011_12_2_a5/
[1] Zeeman E. C., “The topology of brain and visual perception”, The Topology of 3-Manifolds, N.Y., 1962 | MR
[2] Nebaluev S. I., Gomologicheskaya teoriya tolerantnykh prostranstv, Izd-vo Sarat. un-ta, Saratov, 2006
[3] Nebaluev S. I., Susin M. N., “Tolerantnoe rassloenie putei i teorema Gurevicha dlya tolerantnykh prostranstv, I”, Izv. Sarat. un-ta. Nov. ser. Matematika. Mekhanika. Informatika, 9:4 (2009)
[4] Nebaluev S. I., Korobchenko E. V., Susin M. N., “Punktirovannye tolerantnye kubicheskie singulyarnye gomologii”, Issledovaniya po algebre, teorii chisel, funktsionalnomu analizu i smezhnym voprosam, 6, Izd-vo Sarat. un-ta, Saratov, 2010
[5] Khu Sy-tszyan, Teoriya gomotopii, Mir, M., 1964
[6] Korobchenko E. V., “Gomotopicheskie gruppy prostranstv tolerantnykh petel”, Izvestiya Sarat. un-ta. Novaya seriya. Matematika. Mekhanika. Informatika, 11:3 (2011)
[7] Nebaluev S. I., “Vysshie gomotopicheskie gruppy tolerantnykh prostranstv”, Issledovaniya po algebre, teorii chisel, funktsionalnomu analizu i smezhnym voprosam, 2, Izd-vo Sarat. un-ta, Saratov, 2003