Universality theorems for composite functions of zeta-functions
Čebyševskij sbornik, Tome 12 (2011) no. 2, pp. 182-191.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{CHEB_2011_12_2_a20,
     author = {Antanas Laurin\v{c}ikas},
     title = {Universality theorems for composite functions of zeta-functions},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {182--191},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2011_12_2_a20/}
}
TY  - JOUR
AU  - Antanas Laurinčikas
TI  - Universality theorems for composite functions of zeta-functions
JO  - Čebyševskij sbornik
PY  - 2011
SP  - 182
EP  - 191
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2011_12_2_a20/
LA  - en
ID  - CHEB_2011_12_2_a20
ER  - 
%0 Journal Article
%A Antanas Laurinčikas
%T Universality theorems for composite functions of zeta-functions
%J Čebyševskij sbornik
%D 2011
%P 182-191
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2011_12_2_a20/
%G en
%F CHEB_2011_12_2_a20
Antanas Laurinčikas. Universality theorems for composite functions of zeta-functions. Čebyševskij sbornik, Tome 12 (2011) no. 2, pp. 182-191. http://geodesic.mathdoc.fr/item/CHEB_2011_12_2_a20/

[1] B. Bagchi, The statistical behaviour and universality properties of the Riemann zeta-function and other allied Dirichlet series, Ph. D. Thesis, Indian Statistical Institute, Calcuta, 1981

[2] K. M. Bitar, N. N. Khuri, H. C. Ren, “Paths integrals and Voronin's theorem on the universality of the Riemann zeta-function”, Ann. Phys., 211 (1991), 172–196 | DOI | MR | Zbl

[3] S. M. Gonek, Analytic properties of zeta and $L$-functions, Ph. D. Thesis, University of Michigan, 1979 | MR

[4] A. A. Karatsuba, S. M. Voronin, The Riemann Zeta-Function, de Gruyter, New York, 1992 | MR | Zbl

[5] A. Laurinčikas, Limit Theorems for the Riemann Zeta-Function, Kluwer Academic Publishers, Dordrecht–Boston–London, 1996 | MR

[6] A. Laurinčikas, “Universality of the Riemann zeta-function”, J. Number Theory, 130 (2010), 2323–2331 | DOI | MR | Zbl

[7] A. Laurinčikas, R. Garunkštis, The Lerch zeta-function, Kluwer Academic Publishers, Dordrecht–Boston–London, 2002 | MR | Zbl

[8] S. N. Mergelyan, “Uniform approximations to functions of complex variable”, Usp. Mat. Nauk, 7 (1952), 31–122 (in Russian) ; Amer. Math. Soc. Trans., 101, 1954, 99 pp. | MR | Zbl

[9] J. Sander, J. Steuding, “Joint universality for sums and products of Dirichlet $L$-functions”, Analysis (Munich), 26:3 (2006), 295–312 | DOI | MR | Zbl

[10] J. Steuding, Value Distribution of $L$-Functions, Lecture Notes Math., 1877, Springer-Verlag, Berlin–Heidelberg, 2007 | MR | Zbl

[11] S. M. Voronin, “Theorem on the “universality” of the Riemann zeta-function”, Izv. Acad. Nauk SSSR, Ser. matem., 39 (1975), 475–486 (in Russian) | MR | Zbl

[12] S. M. Voronin, “On the functional independence of Dirichlet $L$-functions”, Acta Arith., 27, 493–503 (in Russian) | MR | Zbl

[13] J. L. Walsh, Interpolation and Approximation by Rational Functions in the Complex Domain, Amer. Math. Soc. Coll. Publ., 20, 1960 | MR | Zbl