On twisted $L$-functions of elliptic curves
Čebyševskij sbornik, Tome 12 (2011) no. 2, pp. 171-181.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{CHEB_2011_12_2_a19,
     author = {Virginija Garbaliauskien\.{e} and Antanas Laurin\v{c}ikas},
     title = {On twisted  $L$-functions of elliptic curves},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {171--181},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2011_12_2_a19/}
}
TY  - JOUR
AU  - Virginija Garbaliauskienė
AU  - Antanas Laurinčikas
TI  - On twisted  $L$-functions of elliptic curves
JO  - Čebyševskij sbornik
PY  - 2011
SP  - 171
EP  - 181
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2011_12_2_a19/
LA  - en
ID  - CHEB_2011_12_2_a19
ER  - 
%0 Journal Article
%A Virginija Garbaliauskienė
%A Antanas Laurinčikas
%T On twisted  $L$-functions of elliptic curves
%J Čebyševskij sbornik
%D 2011
%P 171-181
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2011_12_2_a19/
%G en
%F CHEB_2011_12_2_a19
Virginija Garbaliauskienė; Antanas Laurinčikas. On twisted  $L$-functions of elliptic curves. Čebyševskij sbornik, Tome 12 (2011) no. 2, pp. 171-181. http://geodesic.mathdoc.fr/item/CHEB_2011_12_2_a19/

[1] B. Bagchi, The statistical behaviour and universality properties of the Riemann zeta-function and other allied Dirichlet series, Ph. D. Thesis, Indian Statistical Institute, Calcuta, 1981

[2] C. Breuil, B. Conrad, F. Diamond, R. Taylor, “On the modularity of elliptic curves over $\mathbb{Q}$: wild 3-adic exercises”, J. Amer. Math. Soc., 14 (2001), 843–939 | DOI | MR | Zbl

[3] S. Chowla, P. Erdös, “A theorem on the values of $L$-function”, J. Indian Math. Soc. A, 15 (1951), 11–18 | MR | Zbl

[4] P. D. T. A. Elliott, “On the distribution of the values of $L$-series in the half-plane $\sigma>{\frac12}$”, Indag. Math., 31:3 (1971), 222–234 | MR

[5] P. D. T. A. Elliott, “On the distribution of ${\rm arg}L(s, \chi)$ in the half-plane $\sigma>{\frac12}$”, Acta Arith., 20 (1972), 155–169 | MR | Zbl

[6] K. M. Eminyan, “$\chi$-universality of the Dirichlet $L$-functions”, Math. Notes, 47 (1880), 618–622 | DOI | MR

[7] V. Garbaliauskienė, A. Laurinčikas, E. Stankus, “Limit theorems for twists of $L$-functions of elliptic curves”, Lith. Math. J., 50:2 (2010), 187–197 | DOI | MR | Zbl

[8] S. M. Gonek, Analytic properties of zeta and $L$-functions, Ph. D. Thesis, University of Michigan, 1979 | MR

[9] A. Granville, K. Soudararajan, “Extreme values of $L(1, \chi_0)$”, Geom. Funct. Anal., 13 (2003), 982–1028 | DOI | MR

[10] Y. Lamzouri, “Distribution of values of $L$-function at the adges of the critical strip”, Proc. London Math. Soc., 100:3 (2010), 835–863 | DOI | MR | Zbl

[11] A. Laurinčikas, Limit Theorems for the Riemann Zeta-Function, Kluwer, Dordrecht, 1996 | MR

[12] A. Laurinčikas, “On the Matsumoto zeta function”, Acta Arith., 84 (1988), 1–16 | MR

[13] A. Laurinčikas, “Remarks on the characteristic transforms of probability measures”, Šiauliai Math. Semin., 2:10 (2007), 43–52 | MR | Zbl

[14] E. Stankus, “The distribution of $L$-functions”, Liet. matem. rink., 15:3 (1975), 127–134 (in Russian) | MR | Zbl