Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2011_12_2_a13, author = {S. V. Syrovatskaya}, title = {On $P$-algebras based on \emph{4}-systems}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {110--117}, publisher = {mathdoc}, volume = {12}, number = {2}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2011_12_2_a13/} }
S. V. Syrovatskaya. On $P$-algebras based on \emph{4}-systems. Čebyševskij sbornik, Tome 12 (2011) no. 2, pp. 110-117. http://geodesic.mathdoc.fr/item/CHEB_2011_12_2_a13/
[1] Chakrabarti S., “Novaya algebraicheskaya struktura troinykh sistem Shteinera”, Fundamentalnaya i prikladnaya matematika, 8:1 (2002), 313–318 | MR | Zbl
[2] Artamonov V. A., Chakrabarti S., “Svoistva algebr primarnogo poryadka s odnoi ternarnoi maltsevskoi operatsiei”, Algebra i logika, 34:2 (1995), 132–141 | MR | Zbl
[3] Zinovev V. A., Zinovev D. V., “Klassifikatsiya sistem chetverok Shteinera poryadka $16$, rang kotorykh ne prevyshaet $13$”, Problemy peredachi informatsii, 40:4 (2004), 48–67 | MR
[4] Boschenko A. P., “Svoistva P-algebr na osnove troinykh sistem Shteinera”, Chebyshevskii sbornik, 4:1 (2003), 51–53
[5] Armanious M. H., Elzayat E. M. A., “Extending sloops of cardinality $16$ to SQS-skeins with all possible congruence lattices”, Quasigroups and related systems, 12 (2004), 1–12 | MR | Zbl
[6] Ganter B., Werner H., “Co-ordinatizing Steiner systems”, Annals of discrete math., 7 (1980), 3–24 | DOI | MR | Zbl