On $P$-algebras based on \emph{4}-systems
Čebyševskij sbornik, Tome 12 (2011) no. 2, pp. 110-117.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{CHEB_2011_12_2_a13,
     author = {S. V. Syrovatskaya},
     title = {On $P$-algebras based on \emph{4}-systems},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {110--117},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2011_12_2_a13/}
}
TY  - JOUR
AU  - S. V. Syrovatskaya
TI  - On $P$-algebras based on \emph{4}-systems
JO  - Čebyševskij sbornik
PY  - 2011
SP  - 110
EP  - 117
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2011_12_2_a13/
LA  - ru
ID  - CHEB_2011_12_2_a13
ER  - 
%0 Journal Article
%A S. V. Syrovatskaya
%T On $P$-algebras based on \emph{4}-systems
%J Čebyševskij sbornik
%D 2011
%P 110-117
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2011_12_2_a13/
%G ru
%F CHEB_2011_12_2_a13
S. V. Syrovatskaya. On $P$-algebras based on \emph{4}-systems. Čebyševskij sbornik, Tome 12 (2011) no. 2, pp. 110-117. http://geodesic.mathdoc.fr/item/CHEB_2011_12_2_a13/

[1] Chakrabarti S., “Novaya algebraicheskaya struktura troinykh sistem Shteinera”, Fundamentalnaya i prikladnaya matematika, 8:1 (2002), 313–318 | MR | Zbl

[2] Artamonov V. A., Chakrabarti S., “Svoistva algebr primarnogo poryadka s odnoi ternarnoi maltsevskoi operatsiei”, Algebra i logika, 34:2 (1995), 132–141 | MR | Zbl

[3] Zinovev V. A., Zinovev D. V., “Klassifikatsiya sistem chetverok Shteinera poryadka $16$, rang kotorykh ne prevyshaet $13$”, Problemy peredachi informatsii, 40:4 (2004), 48–67 | MR

[4] Boschenko A. P., “Svoistva P-algebr na osnove troinykh sistem Shteinera”, Chebyshevskii sbornik, 4:1 (2003), 51–53

[5] Armanious M. H., Elzayat E. M. A., “Extending sloops of cardinality $16$ to SQS-skeins with all possible congruence lattices”, Quasigroups and related systems, 12 (2004), 1–12 | MR | Zbl

[6] Ganter B., Werner H., “Co-ordinatizing Steiner systems”, Annals of discrete math., 7 (1980), 3–24 | DOI | MR | Zbl