Formations of finite monounary algebras
Čebyševskij sbornik, Tome 12 (2011) no. 2, pp. 102-109
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we characterize the lattice of subformations of an arbitrary finite formation of monounary algebras. It is proved that every finite formation of monounary algebras is a hereditary formation.
@article{CHEB_2011_12_2_a12,
author = {A. L. Rasstrigin},
title = {Formations of finite monounary algebras},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {102--109},
year = {2011},
volume = {12},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2011_12_2_a12/}
}
A. L. Rasstrigin. Formations of finite monounary algebras. Čebyševskij sbornik, Tome 12 (2011) no. 2, pp. 102-109. http://geodesic.mathdoc.fr/item/CHEB_2011_12_2_a12/
[1] Shemetkov L. A., Formatsii konechnykh grupp, Nauka, M., 1978 | MR | Zbl
[2] Shemetkov L. A., Skiba A. N., Formatsii algebraicheskikh sistem, Nauka, M., 1989 | MR
[3] Kartashov V. K., “Kvazimnogoobraziya unarov”, Matem. zametki, 27:1 (1980), 7–20 | MR | Zbl
[4] Burris S., Sankappanavar H. P., A Course in Universal Algebra, Graduate Texts in Mathematics, 78, Springer-Verlag, 1981 | DOI | MR | Zbl
[5] Wenzel G. H., “Subdirect irreducibility and equational compactness in unary algebras $\langle A;f\rangle$”, Archiv der Mathematik, 21 (1970), 256–264 | DOI | MR | Zbl
[6] Ash C. J., “Pseudovarieties, generalized varieties and similarly described classes”, J. Algebra, 92 (1985), 104–115 | DOI | MR | Zbl