Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2011_12_2_a1, author = {I. I. Il'yasov and G. A. Uzakbaeva}, title = {On the sequence $[n\alpha]$, $n=1,2,\dots$}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {15--17}, publisher = {mathdoc}, volume = {12}, number = {2}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2011_12_2_a1/} }
I. I. Il'yasov; G. A. Uzakbaeva. On the sequence $[n\alpha]$, $n=1,2,\dots$. Čebyševskij sbornik, Tome 12 (2011) no. 2, pp. 15-17. http://geodesic.mathdoc.fr/item/CHEB_2011_12_2_a1/
[1] Slater N. B., “The distribution of the inteqers $N$ for which $\{\Theta N\}\varphi$”, Proc. Cambridge Phil. Soc., 46 (1950), 525–534 | DOI | MR | Zbl
[2] Thoger Bang, “On the sequence $[n\alpha]$, $n=1,2,\dots$ supplementary note to the preceding paper by Th. Skolem”, Math. Scand., 5 (1957), 69–76 | MR
[3] Ilyasov I. I., “Strukturnaya formula dlya posledovatelnosti $\{n\theta\}$ i ee prilozheniya v voprosakh teorii chisel”, Chebyshevskii sbornik, 11:1, Trudy VII mezhdunarodnoi konf. algebra i teoriya chisel: sovremennye problemy i prilozheniya (2010), 152–173 | MR
[4] Ilyasov I. I., “O strukture posledovatelnosti $\{n\theta\}$”, Teoriya neregulyarnykh krivykh v razlichnykh geometricheskikh prostranstvakh, Sbornik statei, Alma-Ata, 1979, 44–52 | MR