On the sequence $[n\alpha]$, $n=1,2,\dots$
Čebyševskij sbornik, Tome 12 (2011) no. 2, pp. 15-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{CHEB_2011_12_2_a1,
     author = {I. I. Il'yasov and G. A. Uzakbaeva},
     title = {On the sequence $[n\alpha]$, $n=1,2,\dots$},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {15--17},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2011_12_2_a1/}
}
TY  - JOUR
AU  - I. I. Il'yasov
AU  - G. A. Uzakbaeva
TI  - On the sequence $[n\alpha]$, $n=1,2,\dots$
JO  - Čebyševskij sbornik
PY  - 2011
SP  - 15
EP  - 17
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2011_12_2_a1/
LA  - ru
ID  - CHEB_2011_12_2_a1
ER  - 
%0 Journal Article
%A I. I. Il'yasov
%A G. A. Uzakbaeva
%T On the sequence $[n\alpha]$, $n=1,2,\dots$
%J Čebyševskij sbornik
%D 2011
%P 15-17
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2011_12_2_a1/
%G ru
%F CHEB_2011_12_2_a1
I. I. Il'yasov; G. A. Uzakbaeva. On the sequence $[n\alpha]$, $n=1,2,\dots$. Čebyševskij sbornik, Tome 12 (2011) no. 2, pp. 15-17. http://geodesic.mathdoc.fr/item/CHEB_2011_12_2_a1/

[1] Slater N. B., “The distribution of the inteqers $N$ for which $\{\Theta N\}\varphi$”, Proc. Cambridge Phil. Soc., 46 (1950), 525–534 | DOI | MR | Zbl

[2] Thoger Bang, “On the sequence $[n\alpha]$, $n=1,2,\dots$ supplementary note to the preceding paper by Th. Skolem”, Math. Scand., 5 (1957), 69–76 | MR

[3] Ilyasov I. I., “Strukturnaya formula dlya posledovatelnosti $\{n\theta\}$ i ee prilozheniya v voprosakh teorii chisel”, Chebyshevskii sbornik, 11:1, Trudy VII mezhdunarodnoi konf. algebra i teoriya chisel: sovremennye problemy i prilozheniya (2010), 152–173 | MR

[4] Ilyasov I. I., “O strukture posledovatelnosti $\{n\theta\}$”, Teoriya neregulyarnykh krivykh v razlichnykh geometricheskikh prostranstvakh, Sbornik statei, Alma-Ata, 1979, 44–52 | MR