Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2011_12_1_a9, author = {A. Laurin\v{c}ikas}, title = {On joint universality of {Dirichlet} $L$-functions}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {124--139}, publisher = {mathdoc}, volume = {12}, number = {1}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHEB_2011_12_1_a9/} }
A. Laurinčikas. On joint universality of Dirichlet $L$-functions. Čebyševskij sbornik, Tome 12 (2011) no. 1, pp. 124-139. http://geodesic.mathdoc.fr/item/CHEB_2011_12_1_a9/
[1] Bagchi B., The statistical behaviour and universality properties of the Riemann zeta-function and other allied Dirichlet series, Ph. D. Thesis, Indian Statistical Institute, Calcutta, 1981
[2] Bagchi B., “A joint universality theorem for Dirichlet $L$-functions”, Math. Z., 181 (1982), 319–334 | DOI | MR | Zbl
[3] Billingsley P., Convergence of Probability Measures, Willey, New York, 1968 | MR | Zbl
[4] Gonek S. M., Analytic properties of zeta and $L$-functions, Ph. D. Thesis, University of Michigan, 1979 | MR
[5] Karatsuba A. A., Voronin S. M., The Riemann Zeta-Function, de Gruyter, New York, 1992 | MR | Zbl
[6] Lang S., Algebra, Addison-Wesley, Reading, Mass., 1967 | MR | Zbl
[7] Laurinčikas A., Limit Theorems for the Riemann Zeta-Function, Kluwer Academic Publishers, Dordrecht–Boston–London, 1996 | MR
[8] Laurinčikas A., Matsumoto K., “The joint universality and the functional independence for Lerch zeta-functions”, Nagoya Math. J., 157 (2000), 211–227 | MR | Zbl
[9] Laurinčikas A., Matsumoto K., “The joint universality of zeta-functions attached to certain cusp forms”, Fiz. Mat. Fak. Moksl. Semin. Darb., 5 (2002), 58–75 | MR | Zbl
[10] Mergelyan S. N., “Uniform approximations to functions of complex variable”, Usp. Mat. Nauk (N.S.), 7 (1952), 31–122 (in Russian) | MR | Zbl
[11] Steuding J., “Value Distribution of $L$-Functions”, Lecture Notes Math., 1877, Springer-Verlag, Berlin–Heidelberg–New York, 2007 | MR | Zbl
[12] Titchmarsh E. C., The Theory of Functions, Oxford University Press, Oxford, 1939
[13] Voronin S. M., “Theorem on the “universality” of the Riemann zeta-function”, Izv. Akad. Nauk SSSR, Ser. matem., 39 (1975), 475–486 (in Russian) | MR | Zbl
[14] Voronin S. M., “The functional independence of Dirichlet $L$-functions”, Acta Arith., 27 (1975), 493–503 (in Russian) | MR | Zbl
[15] Walsh J. L., Interpolation and Approximation by Rational Functions in the Complex Domain, Amer. Math. Soc. Coll. Publ., 20, 1960 | MR | Zbl