On joint universality of Dirichlet $L$-functions
Čebyševskij sbornik, Tome 12 (2011) no. 1, pp. 124-139

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, we present a probabilistic proof of the Voronin theorem on joint un universality of Dirichlet $L$-functions, and prove the universality for some composite functions.
@article{CHEB_2011_12_1_a9,
     author = {A. Laurin\v{c}ikas},
     title = {On joint universality of {Dirichlet} $L$-functions},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {124--139},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2011_12_1_a9/}
}
TY  - JOUR
AU  - A. Laurinčikas
TI  - On joint universality of Dirichlet $L$-functions
JO  - Čebyševskij sbornik
PY  - 2011
SP  - 124
EP  - 139
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2011_12_1_a9/
LA  - en
ID  - CHEB_2011_12_1_a9
ER  - 
%0 Journal Article
%A A. Laurinčikas
%T On joint universality of Dirichlet $L$-functions
%J Čebyševskij sbornik
%D 2011
%P 124-139
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2011_12_1_a9/
%G en
%F CHEB_2011_12_1_a9
A. Laurinčikas. On joint universality of Dirichlet $L$-functions. Čebyševskij sbornik, Tome 12 (2011) no. 1, pp. 124-139. http://geodesic.mathdoc.fr/item/CHEB_2011_12_1_a9/