A structure formula for a sequence of residues $ax\pmod m$ and its applications to a continued fraction associated with a quadratic nonresidue modulo a prime
Čebyševskij sbornik, Tome 12 (2011) no. 1, pp. 93-99.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{CHEB_2011_12_1_a6,
     author = {I. I. Il'yasov},
     title = {A structure formula for a sequence of residues $ax\pmod m$ and its applications to a continued fraction associated with a quadratic nonresidue modulo a prime},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {93--99},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2011_12_1_a6/}
}
TY  - JOUR
AU  - I. I. Il'yasov
TI  - A structure formula for a sequence of residues $ax\pmod m$ and its applications to a continued fraction associated with a quadratic nonresidue modulo a prime
JO  - Čebyševskij sbornik
PY  - 2011
SP  - 93
EP  - 99
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2011_12_1_a6/
LA  - ru
ID  - CHEB_2011_12_1_a6
ER  - 
%0 Journal Article
%A I. I. Il'yasov
%T A structure formula for a sequence of residues $ax\pmod m$ and its applications to a continued fraction associated with a quadratic nonresidue modulo a prime
%J Čebyševskij sbornik
%D 2011
%P 93-99
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2011_12_1_a6/
%G ru
%F CHEB_2011_12_1_a6
I. I. Il'yasov. A structure formula for a sequence of residues $ax\pmod m$ and its applications to a continued fraction associated with a quadratic nonresidue modulo a prime. Čebyševskij sbornik, Tome 12 (2011) no. 1, pp. 93-99. http://geodesic.mathdoc.fr/item/CHEB_2011_12_1_a6/

[1] Gelfond A. O., Linnik Yu. V., Elementarnye metody v analiticheskoi teorii chisel, Fizmatgiz, M., 1962, 214–220

[2] Ilyasov I. I., “Strukturnaya formula dlya posledovatelnosti $\left\{n\theta \right\}$ i ee nekotorye prilozheniya v voprosakh teorii chisel”, Chebyshevskii sbornik, 11:1 (2010), 152–172 | MR