Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2011_12_1_a6, author = {I. I. Il'yasov}, title = {A structure formula for a sequence of residues $ax\pmod m$ and its applications to a continued fraction associated with a quadratic nonresidue modulo a prime}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {93--99}, publisher = {mathdoc}, volume = {12}, number = {1}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2011_12_1_a6/} }
TY - JOUR AU - I. I. Il'yasov TI - A structure formula for a sequence of residues $ax\pmod m$ and its applications to a continued fraction associated with a quadratic nonresidue modulo a prime JO - Čebyševskij sbornik PY - 2011 SP - 93 EP - 99 VL - 12 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2011_12_1_a6/ LA - ru ID - CHEB_2011_12_1_a6 ER -
%0 Journal Article %A I. I. Il'yasov %T A structure formula for a sequence of residues $ax\pmod m$ and its applications to a continued fraction associated with a quadratic nonresidue modulo a prime %J Čebyševskij sbornik %D 2011 %P 93-99 %V 12 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2011_12_1_a6/ %G ru %F CHEB_2011_12_1_a6
I. I. Il'yasov. A structure formula for a sequence of residues $ax\pmod m$ and its applications to a continued fraction associated with a quadratic nonresidue modulo a prime. Čebyševskij sbornik, Tome 12 (2011) no. 1, pp. 93-99. http://geodesic.mathdoc.fr/item/CHEB_2011_12_1_a6/
[1] Gelfond A. O., Linnik Yu. V., Elementarnye metody v analiticheskoi teorii chisel, Fizmatgiz, M., 1962, 214–220
[2] Ilyasov I. I., “Strukturnaya formula dlya posledovatelnosti $\left\{n\theta \right\}$ i ee nekotorye prilozheniya v voprosakh teorii chisel”, Chebyshevskii sbornik, 11:1 (2010), 152–172 | MR