Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2010_11_2_a3, author = {E. V. Kolomeǐkina}, title = {The problem of biregular triangulations of a sphere}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {57--72}, publisher = {mathdoc}, volume = {11}, number = {2}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2010_11_2_a3/} }
E. V. Kolomeǐkina. The problem of biregular triangulations of a sphere. Čebyševskij sbornik, Tome 11 (2010) no. 2, pp. 57-72. http://geodesic.mathdoc.fr/item/CHEB_2010_11_2_a3/
[1] Dolbilin N. P., Which clusters can form a crystal?, Voronoi's impact on modern science, v. 2, Kyiv, 1998, 96–104 | Zbl
[2] Aleksentseva S. A., Klassifikatsiya razbienii sfery na kongruentnye treugolniki, rukopis dep. v VINITI 05.10.2004 No 1559–V2004, MGU, M., 2004, 31 pp.
[3] Kolomeikina E. V., “Lokalnye usloviya pravilnosti razbieniya evklidovoi sfery”, Chebyshevskii sbornik, 6:2(14) (2005), 184–195 | MR | Zbl