The problem of biregular triangulations of a sphere
Čebyševskij sbornik, Tome 11 (2010) no. 2, pp. 57-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{CHEB_2010_11_2_a3,
     author = {E. V. Kolomeǐkina},
     title = {The problem of biregular triangulations of a sphere},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {57--72},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2010_11_2_a3/}
}
TY  - JOUR
AU  - E. V. Kolomeǐkina
TI  - The problem of biregular triangulations of a sphere
JO  - Čebyševskij sbornik
PY  - 2010
SP  - 57
EP  - 72
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2010_11_2_a3/
LA  - ru
ID  - CHEB_2010_11_2_a3
ER  - 
%0 Journal Article
%A E. V. Kolomeǐkina
%T The problem of biregular triangulations of a sphere
%J Čebyševskij sbornik
%D 2010
%P 57-72
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2010_11_2_a3/
%G ru
%F CHEB_2010_11_2_a3
E. V. Kolomeǐkina. The problem of biregular triangulations of a sphere. Čebyševskij sbornik, Tome 11 (2010) no. 2, pp. 57-72. http://geodesic.mathdoc.fr/item/CHEB_2010_11_2_a3/

[1] Dolbilin N. P., Which clusters can form a crystal?, Voronoi's impact on modern science, v. 2, Kyiv, 1998, 96–104 | Zbl

[2] Aleksentseva S. A., Klassifikatsiya razbienii sfery na kongruentnye treugolniki, rukopis dep. v VINITI 05.10.2004 No 1559–V2004, MGU, M., 2004, 31 pp.

[3] Kolomeikina E. V., “Lokalnye usloviya pravilnosti razbieniya evklidovoi sfery”, Chebyshevskii sbornik, 6:2(14) (2005), 184–195 | MR | Zbl