Application of a weighted sieve to the estimation of the least almost prime number of a polynomial sequence of a natural argument
Čebyševskij sbornik, Tome 11 (2010) no. 1, pp. 81-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

In work come out estimate the most smaller almost-prime number in polynomial sequence of natural argument.
@article{CHEB_2010_11_1_a9,
     author = {E. V. Vakhitova},
     title = {Application of a weighted sieve to the estimation of the least almost prime number of a polynomial sequence of a natural argument},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {81--84},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2010_11_1_a9/}
}
TY  - JOUR
AU  - E. V. Vakhitova
TI  - Application of a weighted sieve to the estimation of the least almost prime number of a polynomial sequence of a natural argument
JO  - Čebyševskij sbornik
PY  - 2010
SP  - 81
EP  - 84
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2010_11_1_a9/
LA  - ru
ID  - CHEB_2010_11_1_a9
ER  - 
%0 Journal Article
%A E. V. Vakhitova
%T Application of a weighted sieve to the estimation of the least almost prime number of a polynomial sequence of a natural argument
%J Čebyševskij sbornik
%D 2010
%P 81-84
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2010_11_1_a9/
%G ru
%F CHEB_2010_11_1_a9
E. V. Vakhitova. Application of a weighted sieve to the estimation of the least almost prime number of a polynomial sequence of a natural argument. Čebyševskij sbornik, Tome 11 (2010) no. 1, pp. 81-84. http://geodesic.mathdoc.fr/item/CHEB_2010_11_1_a9/

[1] Levin B. V., “O naimenshem pochti prostom chisle arifmeticheskoi progressii i posledovatelnosti $k^2n^2+1 $”, UMN, 20:4 (124) (1965), 158–162 | MR | Zbl

[2] Bukhshtab A. A., “Novyi tip vesovogo resheta”, Teoriya chisel i ee prilozheniya, Vsesoyuz. konf., Tez. dokl. (Tbilisi, 1985), 22–24

[3] Vakhitova E. V., “Ob odnomernom reshete Selberga s vesami Bukhshtaba novogo tipa”, Matem. zametki, 66:1 (1999), 38–49 | MR | Zbl

[4] Vakhitova E. V., Metody resheta s vesami Bukhshtaba i ikh prilozheniya, Monografiya, Izd-vo MPGU Prometei, M., 2002, 268 pp.; РЖ Матем., 2003, 03.11-13А.115К

[5] Halberstam H., Richert H.-E., Sieve methods, Acad. Press, London, 1974, 364 pp. | MR | Zbl