Diophantine approximation on the curves with non--monotonic error function in the $p$-adic case
Čebyševskij sbornik, Tome 11 (2010) no. 1, pp. 74-80

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that a normal (according to Mahler) curve in $\mathbb Z^n_p$ satisfies a convergent Khintchine Theorem with a non-monotonic error function.
@article{CHEB_2010_11_1_a8,
     author = {Natalia Budarina},
     title = {Diophantine approximation on the curves with non--monotonic error function in the $p$-adic case},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {74--80},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2010_11_1_a8/}
}
TY  - JOUR
AU  - Natalia Budarina
TI  - Diophantine approximation on the curves with non--monotonic error function in the $p$-adic case
JO  - Čebyševskij sbornik
PY  - 2010
SP  - 74
EP  - 80
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2010_11_1_a8/
LA  - en
ID  - CHEB_2010_11_1_a8
ER  - 
%0 Journal Article
%A Natalia Budarina
%T Diophantine approximation on the curves with non--monotonic error function in the $p$-adic case
%J Čebyševskij sbornik
%D 2010
%P 74-80
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2010_11_1_a8/
%G en
%F CHEB_2010_11_1_a8
Natalia Budarina. Diophantine approximation on the curves with non--monotonic error function in the $p$-adic case. Čebyševskij sbornik, Tome 11 (2010) no. 1, pp. 74-80. http://geodesic.mathdoc.fr/item/CHEB_2010_11_1_a8/