Diophantine approximation on the curves with non--monotonic error function in the $p$-adic case
Čebyševskij sbornik, Tome 11 (2010) no. 1, pp. 74-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that a normal (according to Mahler) curve in $\mathbb Z^n_p$ satisfies a convergent Khintchine Theorem with a non-monotonic error function.
@article{CHEB_2010_11_1_a8,
     author = {Natalia Budarina},
     title = {Diophantine approximation on the curves with non--monotonic error function in the $p$-adic case},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {74--80},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2010_11_1_a8/}
}
TY  - JOUR
AU  - Natalia Budarina
TI  - Diophantine approximation on the curves with non--monotonic error function in the $p$-adic case
JO  - Čebyševskij sbornik
PY  - 2010
SP  - 74
EP  - 80
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2010_11_1_a8/
LA  - en
ID  - CHEB_2010_11_1_a8
ER  - 
%0 Journal Article
%A Natalia Budarina
%T Diophantine approximation on the curves with non--monotonic error function in the $p$-adic case
%J Čebyševskij sbornik
%D 2010
%P 74-80
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2010_11_1_a8/
%G en
%F CHEB_2010_11_1_a8
Natalia Budarina. Diophantine approximation on the curves with non--monotonic error function in the $p$-adic case. Čebyševskij sbornik, Tome 11 (2010) no. 1, pp. 74-80. http://geodesic.mathdoc.fr/item/CHEB_2010_11_1_a8/

[1] K. Mahler, “Über Transcendente $p$-adisce Zahlen”, Composito Math., 2 (1935), 259–275 | MR

[2] W. W. Adams, “Transcendental numbers in the $p$-adic domain”, Amer. J. Math., 88:2 (1966), 279–308 | MR | Zbl

[3] A. Khintchine, “Einige Sätze über Kettenbrüche mit Anwendungen auf die Theorie der Diophantischen Approximationen”, Math. Ann., 92 (1924), 115–125 | MR | Zbl

[4] V. Sprindžuk, Mahler's problem in the Metric Theory of Numbers, Transl. Math. Monographs, 25, Amer. Math. Soc., Providence, R.I., 1969 | MR | Zbl

[5] A. Baker, “On a theorem of Sprindžuk”, Proc. Roy. Soc., London Ser. A, 292 (1966), 92–104 | Zbl

[6] V. I. Bernik, “On the exact order of approximation of zero by values of integral polynomials”, Acta Arith., 53 (1989), 17–28 | MR | Zbl

[7] V. V. Beresnevich, “On a theorem of V. Bernik in the metric theory of Diophantine approximation”, Acta Arith., 117:1 (2005), 71–80 | MR | Zbl

[8] V. V. Beresnevich, “On approximation of real numbers by real algebraic numbers”, Acta Arith., 90 (1999), 97–112 | MR | Zbl

[9] N. Budarina, D. Dickinson, “Diophantine approximation on non-degenerate curves with non-monotonic error function”, Bulletin London Math. Soc., 41:1 (2009), 137–146 | MR | Zbl

[10] A. Mohammadi, A. Salehi Golsefidy, “Simultaneous Diophantine approximation in non-degenerate $p$-adic manifolds” (to appear)

[11] Burger E. B., Struppeck T., “Does $\sum_{n=0}^{\infty}\frac{1}{n!}$ Really Converge? Infinite Series and $p$-adic Analysis”, Amer. Math. Monthly, 103 (1996), 565–577 | MR | Zbl