Diophantine approximation on the curves with non--monotonic error function in the $p$-adic case
Čebyševskij sbornik, Tome 11 (2010) no. 1, pp. 74-80
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that a normal (according to Mahler) curve in $\mathbb Z^n_p$ satisfies a convergent Khintchine Theorem with a non-monotonic error function.
@article{CHEB_2010_11_1_a8,
author = {Natalia Budarina},
title = {Diophantine approximation on the curves with non--monotonic error function in the $p$-adic case},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {74--80},
publisher = {mathdoc},
volume = {11},
number = {1},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CHEB_2010_11_1_a8/}
}
TY - JOUR AU - Natalia Budarina TI - Diophantine approximation on the curves with non--monotonic error function in the $p$-adic case JO - Čebyševskij sbornik PY - 2010 SP - 74 EP - 80 VL - 11 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2010_11_1_a8/ LA - en ID - CHEB_2010_11_1_a8 ER -
Natalia Budarina. Diophantine approximation on the curves with non--monotonic error function in the $p$-adic case. Čebyševskij sbornik, Tome 11 (2010) no. 1, pp. 74-80. http://geodesic.mathdoc.fr/item/CHEB_2010_11_1_a8/