A discrete limit theorem for the Mellin transforms of the Riemann zeta-function
Čebyševskij sbornik, Tome 11 (2010) no. 1, pp. 31-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

A discrete limit theorem for the Mellin transforms of the Riemann zeta-function is proven.
@article{CHEB_2010_11_1_a4,
     author = {V. Balinskait\.{e} and A. Laurin\v{c}ikas},
     title = {A discrete limit theorem for the {Mellin} transforms of the {Riemann} zeta-function},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {31--46},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2010_11_1_a4/}
}
TY  - JOUR
AU  - V. Balinskaitė
AU  - A. Laurinčikas
TI  - A discrete limit theorem for the Mellin transforms of the Riemann zeta-function
JO  - Čebyševskij sbornik
PY  - 2010
SP  - 31
EP  - 46
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2010_11_1_a4/
LA  - en
ID  - CHEB_2010_11_1_a4
ER  - 
%0 Journal Article
%A V. Balinskaitė
%A A. Laurinčikas
%T A discrete limit theorem for the Mellin transforms of the Riemann zeta-function
%J Čebyševskij sbornik
%D 2010
%P 31-46
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2010_11_1_a4/
%G en
%F CHEB_2010_11_1_a4
V. Balinskaitė; A. Laurinčikas. A discrete limit theorem for the Mellin transforms of the Riemann zeta-function. Čebyševskij sbornik, Tome 11 (2010) no. 1, pp. 31-46. http://geodesic.mathdoc.fr/item/CHEB_2010_11_1_a4/

[1] V. Balinskaitė, A. Laurinčikas, “Discrete limit theorems for the Mellin transform of the Riemann zeta-function”, Acta Arithmetica, 131:1 (2008), 29–42 | MR | Zbl

[2] P. Billingsley, Convergence of probability measures, John Wiley Sons, New York, 1968 | MR | Zbl

[3] H. Bohr, B. Jessen, “Über die Wertverteilung der Riemannschen Zetafunktion, I”, Acta Math., 54 (1930), 1–35 | MR | Zbl

[4] H. Bohr, B. Jessen, “Über die Wertverteilung der Riemannschen Zetafunktion, II”, Acta Math., 58 (1932), 1–55 | MR

[5] J. B. Conway, Functions of One complex Variable, Springer, Berlin, 2001 | MR

[6] H. Heyer, Probability Measures on Locally Compact Groups, Springer, Berlin, 1977 | MR | Zbl

[7] A. Ivič, M. Jutila, Y. Motohashi, “The Mellin transform of powers of the zeta-function”, Acta Arithmetica, 95 (2000), 305–342 | MR | Zbl

[8] M. Jutila, “The Mellin transform of the square of Riemann's zeta-function”, Period. Math. Hungar., 42 (2001), 179–190 | MR | Zbl

[9] A. Laurinčikas, Limit Theorems for the Riemann Zeta-Function, Kluwer Academic Publishers, Dordrecht–Boston–London, 1996 | MR

[10] A. Laurinčikas, “Limit theorems for the Mellin transform of the square of the Riemann zeta-function, I”, Acta Arithmetica, 122:2 (2006), 173–184 | MR | Zbl

[11] A. Laurinčikas, “Limit theorems for the Mellin transform of the square of the Riemann zeta-function, I”, Acta Arithmetica, 122:2 (2006), 173–184 ; Corr., Acta Arithmetica (to appear) | MR | Zbl

[12] M. Lukkarinen, “The Mellin transform of the square of Riemann's zeta-function and Atkinson formula”, Ann. Acad. Sci. Fenn. Math. Diss., 140 (2005) | MR | Zbl