Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2010_11_1_a3, author = {I. N. Balaba and V. A. Efremov}, title = {Graded quotient rings of semiprime graded rings}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {20--30}, publisher = {mathdoc}, volume = {11}, number = {1}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2010_11_1_a3/} }
I. N. Balaba; V. A. Efremov. Graded quotient rings of semiprime graded rings. Čebyševskij sbornik, Tome 11 (2010) no. 1, pp. 20-30. http://geodesic.mathdoc.fr/item/CHEB_2010_11_1_a3/
[1] Balaba I. N., “Koltsa chastnykh polupervichnykh graduirovannykh kolets”, Universalnaya algebra i ee prilozheniya, Trudy mezhdunarodnogo seminara (Volgograd, 2000), 21–28 | Zbl
[2] Bovdi A. A., Gruppovye koltsa, Izd-vo Uzhgorod. un-ta, Uzhgorod, 1974 | MR
[3] Lambek I., Koltsa i moduli, Mir, M., 1971 | MR | Zbl
[4] Limarenko S. V., Slabo primitivnye superkoltsa, Diss. na soisk. uch. stepeni kand. fiz.-mat. nauk, Moskva, 2005
[5] Zalesskii A. E., Mikhalev A. V., “Gruppovye koltsa”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 2, VINITI, M., 1973, 5–118 | MR
[6] Amitsur S. A., “On rings of quotients”, Symposia Mathematica, 8 (1972), 149–164 | MR | Zbl
[7] Beidar K. I., Martindale W. S., Mikhalev A. V., Rings with generalized identities, Marcel Dekker, Inc., New York, 1996 | MR | Zbl
[8] Cohen M., Rowen L. H., “Group-graded rings”, Comm. Alg., 11:1 (1983), 1253–1270 | MR | Zbl
[9] Fos̆ner M., “In the extended centroid of prime superalgebras with applications to superderivations”, Comm. Alg., 32:2 (2004), 689–705 | MR
[10] Jespers E., Wauters P., “A general notion of noncommutative Krull rings”, J. of Algebra, 112 (1988), 388–398 | MR
[11] Jespers E., “Commputing the extended centroid of Abelian-group graded-rings”, Comm. Alg., 20:12 (1992), 3603–3608 | MR | Zbl
[12] Jespers E., “Jacobson rings and rings strongly graded by an Abelian group”, Israel J. Math., 63 (1988), 67– 78 | MR | Zbl
[13] Martindale W. S., “Prime rings satisfying a generalized polynomial identity”, J. Alg., 12 (1969), 576–584 | MR | Zbl
[14] Nǎstǎsescu C., van Oystaeyen F., Graded ring theory, North-Holland, Amsterdam e. a., 1982 | MR
[15] Passman D. S., “Computing the symmetric rings of quotients”, J. Alg., 105 (1987), 207–235 | MR | Zbl