On the sum of the fractional parts $\sum_{n\leq x}\{ne\}$
Čebyševskij sbornik, Tome 11 (2010) no. 1, pp. 263-265.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we prove unimproval in order of magnitude estimates for the remainder term in asymptotic formula for the sum $\sum_{n\le x} \{ne\}$.
@article{CHEB_2010_11_1_a27,
     author = {A. V. Shutov},
     title = {On the sum of the fractional parts $\sum_{n\leq x}\{ne\}$},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {263--265},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2010_11_1_a27/}
}
TY  - JOUR
AU  - A. V. Shutov
TI  - On the sum of the fractional parts $\sum_{n\leq x}\{ne\}$
JO  - Čebyševskij sbornik
PY  - 2010
SP  - 263
EP  - 265
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2010_11_1_a27/
LA  - ru
ID  - CHEB_2010_11_1_a27
ER  - 
%0 Journal Article
%A A. V. Shutov
%T On the sum of the fractional parts $\sum_{n\leq x}\{ne\}$
%J Čebyševskij sbornik
%D 2010
%P 263-265
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2010_11_1_a27/
%G ru
%F CHEB_2010_11_1_a27
A. V. Shutov. On the sum of the fractional parts $\sum_{n\leq x}\{ne\}$. Čebyševskij sbornik, Tome 11 (2010) no. 1, pp. 263-265. http://geodesic.mathdoc.fr/item/CHEB_2010_11_1_a27/

[1] Ilyasov I. I., Nugaeva Z. T., “Ob ostatke summy $\sum_{n\le x} \{ne\}$”, Algebra i teoriya chisel: sovremennye problemy i prilozheniya, Materialy VII mezhdunarodnoi konferentsii, posvyaschennoi pamyati professora Anatoliya Alekseevicha Karatsuby (Tula, 11–16 maya 2010 goda), TGPU, Tula, 2010, 93–94

[2] Brown T. C., Shiue P. J.-S., “Sums of Fractional Parts of Integer Multiplies of an Irrational”, Journal of Number Theory, 50 (1995), 181–192 | MR | Zbl