The arithmetic and geometry of one-dimensional quasilattices
Čebyševskij sbornik, Tome 11 (2010) no. 1, pp. 255-262.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we use some methods of number theory to study arithmetic and geometric properties of one-dimensional quasilattices. The parametrization of any quasilattice is obtained. Conditions of combinatorial and geometrical equivalence of quasilattices are found. We also study solutions of linear diophantine equations over quasilattices.
@article{CHEB_2010_11_1_a26,
     author = {A. V. Shutov},
     title = {The arithmetic and geometry of one-dimensional quasilattices},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {255--262},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2010_11_1_a26/}
}
TY  - JOUR
AU  - A. V. Shutov
TI  - The arithmetic and geometry of one-dimensional quasilattices
JO  - Čebyševskij sbornik
PY  - 2010
SP  - 255
EP  - 262
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2010_11_1_a26/
LA  - ru
ID  - CHEB_2010_11_1_a26
ER  - 
%0 Journal Article
%A A. V. Shutov
%T The arithmetic and geometry of one-dimensional quasilattices
%J Čebyševskij sbornik
%D 2010
%P 255-262
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2010_11_1_a26/
%G ru
%F CHEB_2010_11_1_a26
A. V. Shutov. The arithmetic and geometry of one-dimensional quasilattices. Čebyševskij sbornik, Tome 11 (2010) no. 1, pp. 255-262. http://geodesic.mathdoc.fr/item/CHEB_2010_11_1_a26/

[1] Zhuravlev V. G., “Odnomernye kvazireshetki Fibonachchi i ikh prilozheniya k diofantovym uravneniyam i algoritmu Evklida”, Algebra i analiz, 19:3 (2007), 177–208 | MR

[2] Zhuravlev V. G., “Summy kvadratov nad $\circ$-koltsom Fibonachchi”, Zap. nauchn. semin. POMI, 337, 2006, 165–190 | MR | Zbl

[3] Zhuravlev V. G., “Uravnenie Pellya nad $\circ$-koltsom Fibonachchi”, Zap. nauchn. semin. POMI, 350, 2008, 139–159 | MR

[4] Shutov A. V., “Proizvodnye povorotov okruzhnosti i podobie orbit”, Zapiski nauchnykh seminarov POMI, 314 (2004), 272–284 | MR | Zbl

[5] Pinner C. G., “On Sums of Fractional Parts $\{n\alpha+\gamma\}$”, J. Number Theory, 65 (1997), 48–73 | MR | Zbl

[6] Pytheas Fogg N., Substitutions in dynamics, arithmetics and combinatorics, Springer, 2001, 402 pp. | MR

[7] Slater N. B., “The distribution of the integers $N$ for which $\{n\theta\}\Phi$”, Proc. Cambridge Philos. Soc., 46 (1950), 525–534 | MR | Zbl

[8] Zhuravlev V. G., Shutov A. V., Derivatives of circle rotations and similarity of orbits, Max-Plank-Institut fur mathematik. Preprint Series, No 62, 2004, 11 pp.