Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2010_11_1_a25, author = {I. Y. Sukharev}, title = {Oppenheim expansion in the ring $Q_g$ of $g$-adic numbers}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {248--254}, publisher = {mathdoc}, volume = {11}, number = {1}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2010_11_1_a25/} }
I. Y. Sukharev. Oppenheim expansion in the ring $Q_g$ of $g$-adic numbers. Čebyševskij sbornik, Tome 11 (2010) no. 1, pp. 248-254. http://geodesic.mathdoc.fr/item/CHEB_2010_11_1_a25/
[1] Oppenheim A., “The representation of real numbers by infinite series of rationals”, Acta Arith., 21 (1972), 391–398 | MR | Zbl
[2] Galambos J., “The ergodic properties of the denominators in the Oppenheim expansion of real numbers into infinite series of rationals”, Quart. J. Math. Oxford (2), 21 (1970), 177–191 | MR | Zbl
[3] Wu J., “A problem of Galambos on Engel expansions”, Acta Arith., XCII:4 (2000), 383–386 | MR | Zbl
[4] Wu J., “The Oppenheim series expansions and Hausdorf dimensions”, Acta Arith., 107:4 (2003) | MR
[5] Wu J., “Metric properties for $p$-adic Oppenheim series expansions”, Acta Arith., 112:3 (2004), 247–261 | MR | Zbl
[6] Knopfmacher A., Knopfmacher J., “Series expansions in $p$-adic and other non-archimedian fields”, Journal of number theory, 32:3 (1989), 297–306 | MR | Zbl
[7] Mahler K., Introduction to $p$-adic numbers and their functions, Cambridge University Press, 1973 | MR
[8] Knopfmacher A., Knopfmacher J., “Metric properties of some special $p$-adic series expansions”, Acta Arith., LXXVI:1 (1996), 11–19 | MR | Zbl
[9] Sprindzhuk V. G., Problema Malera v metricheskoi Teorii Chisel, Minsk, 1967