Oppenheim expansion in the ring $Q_g$ of $g$-adic numbers
Čebyševskij sbornik, Tome 11 (2010) no. 1, pp. 248-254.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{CHEB_2010_11_1_a25,
     author = {I. Y. Sukharev},
     title = {Oppenheim expansion in the ring $Q_g$ of $g$-adic numbers},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {248--254},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2010_11_1_a25/}
}
TY  - JOUR
AU  - I. Y. Sukharev
TI  - Oppenheim expansion in the ring $Q_g$ of $g$-adic numbers
JO  - Čebyševskij sbornik
PY  - 2010
SP  - 248
EP  - 254
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2010_11_1_a25/
LA  - ru
ID  - CHEB_2010_11_1_a25
ER  - 
%0 Journal Article
%A I. Y. Sukharev
%T Oppenheim expansion in the ring $Q_g$ of $g$-adic numbers
%J Čebyševskij sbornik
%D 2010
%P 248-254
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2010_11_1_a25/
%G ru
%F CHEB_2010_11_1_a25
I. Y. Sukharev. Oppenheim expansion in the ring $Q_g$ of $g$-adic numbers. Čebyševskij sbornik, Tome 11 (2010) no. 1, pp. 248-254. http://geodesic.mathdoc.fr/item/CHEB_2010_11_1_a25/

[1] Oppenheim A., “The representation of real numbers by infinite series of rationals”, Acta Arith., 21 (1972), 391–398 | MR | Zbl

[2] Galambos J., “The ergodic properties of the denominators in the Oppenheim expansion of real numbers into infinite series of rationals”, Quart. J. Math. Oxford (2), 21 (1970), 177–191 | MR | Zbl

[3] Wu J., “A problem of Galambos on Engel expansions”, Acta Arith., XCII:4 (2000), 383–386 | MR | Zbl

[4] Wu J., “The Oppenheim series expansions and Hausdorf dimensions”, Acta Arith., 107:4 (2003) | MR

[5] Wu J., “Metric properties for $p$-adic Oppenheim series expansions”, Acta Arith., 112:3 (2004), 247–261 | MR | Zbl

[6] Knopfmacher A., Knopfmacher J., “Series expansions in $p$-adic and other non-archimedian fields”, Journal of number theory, 32:3 (1989), 297–306 | MR | Zbl

[7] Mahler K., Introduction to $p$-adic numbers and their functions, Cambridge University Press, 1973 | MR

[8] Knopfmacher A., Knopfmacher J., “Metric properties of some special $p$-adic series expansions”, Acta Arith., LXXVI:1 (1996), 11–19 | MR | Zbl

[9] Sprindzhuk V. G., Problema Malera v metricheskoi Teorii Chisel, Minsk, 1967