Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2010_11_1_a24, author = {F. A. Sinitsyn}, title = {On the application of {Wiener's} parallel collision search method to discrete logarithmization on {Edwards} curves}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {239--247}, publisher = {mathdoc}, volume = {11}, number = {1}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2010_11_1_a24/} }
TY - JOUR AU - F. A. Sinitsyn TI - On the application of Wiener's parallel collision search method to discrete logarithmization on Edwards curves JO - Čebyševskij sbornik PY - 2010 SP - 239 EP - 247 VL - 11 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2010_11_1_a24/ LA - ru ID - CHEB_2010_11_1_a24 ER -
F. A. Sinitsyn. On the application of Wiener's parallel collision search method to discrete logarithmization on Edwards curves. Čebyševskij sbornik, Tome 11 (2010) no. 1, pp. 239-247. http://geodesic.mathdoc.fr/item/CHEB_2010_11_1_a24/
[1] Harold M. Edwards, “A normal form for elliptic curves”, Bulletin of the American Mathematical Society, 44 (2007), 393–422 | MR | Zbl
[2] Bernstein D. J., Lange T., “Faster addition and doubling on elliptic curves”, ASIACRYPT 2007, LNCS, 4833, Springer, 29–50 | MR | Zbl
[3] H. Hisil, K. Wong, G. Carter, E. Dawson, “Faster group operations on elliptic curves”, Australasian Information Security Conference (AISC 2009) (New Zealand, January 2009), Conferences in Research and Practice in Information Technology, 98, 7–19
[4] P. C. van Oorschot, M. J. Wiener, “Parallel collision search with cryptanalytic applications”, Journal of Cryptology, 12 (1999), 1–28 | MR | Zbl
[5] M. J. Wiener, R. J. Zuccherato, “Faster Attacks on Elliptic Curve Cryptosystems”, Selected Areas in Cryptography'98, 1998, 190–200 | MR
[6] Venbo Mao, Sovremennaya kriptografiya. Teoriya i praktika, Vilyams, M., 2005, 768 pp.
[7] Teske E., “Speeding up Pollard's rho method for computing discrete logarithms”, Algorithmic Number Theory Symposium, 1998, 541–553 | MR
[8] Teske E., “On random walks for Pollard's rho method”, Mathematics of Computation, 70 (2001), 809–825 | MR | Zbl
[9] R. Schoof, “Counting Points on Elliptic Curves over Finite Fields”, J. Theor. Nombres Bordeaux, 7 (1995), 219–254 | MR | Zbl