Modeling knapsack cryptosystems with Diophantine complexity
Čebyševskij sbornik, Tome 11 (2010) no. 1, pp. 209-216
Cet article a éte moissonné depuis la source Math-Net.Ru
The class of systems of protection of the information with public key based upon the modernised knapsack's problem is considered. It is resulted various updatings of such systems containing Diophantos difficulties.
@article{CHEB_2010_11_1_a21,
author = {V. O. Osipyan and S. G. Spirina and A. S. Arutyunyan and V. V. Podkolzin},
title = {Modeling knapsack cryptosystems with {Diophantine} complexity},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {209--216},
year = {2010},
volume = {11},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2010_11_1_a21/}
}
TY - JOUR AU - V. O. Osipyan AU - S. G. Spirina AU - A. S. Arutyunyan AU - V. V. Podkolzin TI - Modeling knapsack cryptosystems with Diophantine complexity JO - Čebyševskij sbornik PY - 2010 SP - 209 EP - 216 VL - 11 IS - 1 UR - http://geodesic.mathdoc.fr/item/CHEB_2010_11_1_a21/ LA - ru ID - CHEB_2010_11_1_a21 ER -
V. O. Osipyan; S. G. Spirina; A. S. Arutyunyan; V. V. Podkolzin. Modeling knapsack cryptosystems with Diophantine complexity. Čebyševskij sbornik, Tome 11 (2010) no. 1, pp. 209-216. http://geodesic.mathdoc.fr/item/CHEB_2010_11_1_a21/
[1] K. Shennon, Raboty po teorii informatsii i kibernetike, IL, M., 1963
[2] A. Salomaa, Public-Key Cryptography, Springer-Verlag, Berlin–Heidelberg–New York–London–Paris–Tokyo–Hong Kong–Barcelona | MR
[3] Merkle R., Hellman M., “Hiding information and signatures in trapdoor knap-sacks”, IEEE Transactions on Information Theory IT, 24 (1978), 525–530
[4] A. Gloden, Mehrgradide Gleichungen, Groningen, 1944
[5] L. E. Dickson, History of the Theory of Numbers, v. 2, Diophantine Analysis, N.Y., 1971 | Zbl
[6] V. O. Osipyan, “Ob odnom obobschenii ryukzachnykh kriptosistem”, Izv. vuzov. Sev.-Kavk. region. Tekhn. nauki, 2003, no. 5, Prilozhenie, 18–25