Algebraic independence over $\mathbb{Q}_p$ of the values of analytic functions at points from $\mathbb{C}_p$
Čebyševskij sbornik, Tome 11 (2010) no. 1, pp. 15-19
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper establishea certain general theorems about the algebraic independence over $\mathbb{Q}_p$ of the valnes of analytic functions at points from $\mathbb{C}_p$.
Keywords:
transcendence, $p$-adic numbers.
@article{CHEB_2010_11_1_a2,
author = {O. Yu. Bazhenova},
title = {Algebraic independence over $\mathbb{Q}_p$ of the values of analytic functions at points from $\mathbb{C}_p$},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {15--19},
publisher = {mathdoc},
volume = {11},
number = {1},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2010_11_1_a2/}
}
TY - JOUR
AU - O. Yu. Bazhenova
TI - Algebraic independence over $\mathbb{Q}_p$ of the values of analytic functions at points from $\mathbb{C}_p$
JO - Čebyševskij sbornik
PY - 2010
SP - 15
EP - 19
VL - 11
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/CHEB_2010_11_1_a2/
LA - ru
ID - CHEB_2010_11_1_a2
ER -
O. Yu. Bazhenova. Algebraic independence over $\mathbb{Q}_p$ of the values of analytic functions at points from $\mathbb{C}_p$. Čebyševskij sbornik, Tome 11 (2010) no. 1, pp. 15-19. http://geodesic.mathdoc.fr/item/CHEB_2010_11_1_a2/