Arithmetic properties of series of certain classes
Čebyševskij sbornik, Tome 11 (2010) no. 1, pp. 184-187.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{CHEB_2010_11_1_a17,
     author = {E. S. Krupitsyn},
     title = {Arithmetic properties of series of certain classes},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {184--187},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2010_11_1_a17/}
}
TY  - JOUR
AU  - E. S. Krupitsyn
TI  - Arithmetic properties of series of certain classes
JO  - Čebyševskij sbornik
PY  - 2010
SP  - 184
EP  - 187
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2010_11_1_a17/
LA  - ru
ID  - CHEB_2010_11_1_a17
ER  - 
%0 Journal Article
%A E. S. Krupitsyn
%T Arithmetic properties of series of certain classes
%J Čebyševskij sbornik
%D 2010
%P 184-187
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2010_11_1_a17/
%G ru
%F CHEB_2010_11_1_a17
E. S. Krupitsyn. Arithmetic properties of series of certain classes. Čebyševskij sbornik, Tome 11 (2010) no. 1, pp. 184-187. http://geodesic.mathdoc.fr/item/CHEB_2010_11_1_a17/

[1] V. G. Chirskii, Arifmeticheskie svoistva ryadov v polyakh s nearkhimedovymi normirovaniyami, Izd-vo MGU im. M. V. Lomonosova, Moskva, 2000

[2] J. Hančel, “Two criteria for transcendental sequences”, Le Matematiche, LVI:1 (2001), 129–140 | MR

[3] D. Ridout, “The $p$-adic generalization of the Thue–Siegel–Roth theorem”, Mathematika, 5 (1958), 40–48 | MR | Zbl