Local conditions for the biregularity of triangulations of the Euclidean plane
Čebyševskij sbornik, Tome 11 (2010) no. 1, pp. 173-183.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{CHEB_2010_11_1_a16,
     author = {E. V. Kolomeǐkina},
     title = {Local conditions for the biregularity of triangulations of the {Euclidean} plane},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {173--183},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2010_11_1_a16/}
}
TY  - JOUR
AU  - E. V. Kolomeǐkina
TI  - Local conditions for the biregularity of triangulations of the Euclidean plane
JO  - Čebyševskij sbornik
PY  - 2010
SP  - 173
EP  - 183
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2010_11_1_a16/
LA  - ru
ID  - CHEB_2010_11_1_a16
ER  - 
%0 Journal Article
%A E. V. Kolomeǐkina
%T Local conditions for the biregularity of triangulations of the Euclidean plane
%J Čebyševskij sbornik
%D 2010
%P 173-183
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2010_11_1_a16/
%G ru
%F CHEB_2010_11_1_a16
E. V. Kolomeǐkina. Local conditions for the biregularity of triangulations of the Euclidean plane. Čebyševskij sbornik, Tome 11 (2010) no. 1, pp. 173-183. http://geodesic.mathdoc.fr/item/CHEB_2010_11_1_a16/

[1] Dolbilin N. P., Which clusters can form a crystal?, Voronoi's impact on modern science, v. 2, Kyiv, 1998, 96–104 | Zbl

[2] Dolbilin N. P., Schattschneider D., “The local theorem for tilings”, Quasicrystals and discrete geometry, Fields Inst. Monogr., 10, ed. J. Patera, Amer.Math. Soc., Providence, RI, 1998, 193–200 | MR

[3] Schattschneider D., Dolbilin N. P., “One Corona is enough for the Euclidean Plane”, Fields Institute Monographs Quasi Crystals and Discrete Geometry, ed. G. Patera, A.M.S., Rod Island, 1998, 207–246 | MR

[4] Kolomeikina E. V., “Lokalnye usloviya pravilnosti razbieniya evklidovoi ploskosti”, Chebyshevskii sbornik, 5:3(11) (2004), 31–51 | MR