Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2010_11_1_a16, author = {E. V. Kolomeǐkina}, title = {Local conditions for the biregularity of triangulations of the {Euclidean} plane}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {173--183}, publisher = {mathdoc}, volume = {11}, number = {1}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2010_11_1_a16/} }
E. V. Kolomeǐkina. Local conditions for the biregularity of triangulations of the Euclidean plane. Čebyševskij sbornik, Tome 11 (2010) no. 1, pp. 173-183. http://geodesic.mathdoc.fr/item/CHEB_2010_11_1_a16/
[1] Dolbilin N. P., Which clusters can form a crystal?, Voronoi's impact on modern science, v. 2, Kyiv, 1998, 96–104 | Zbl
[2] Dolbilin N. P., Schattschneider D., “The local theorem for tilings”, Quasicrystals and discrete geometry, Fields Inst. Monogr., 10, ed. J. Patera, Amer.Math. Soc., Providence, RI, 1998, 193–200 | MR
[3] Schattschneider D., Dolbilin N. P., “One Corona is enough for the Euclidean Plane”, Fields Institute Monographs Quasi Crystals and Discrete Geometry, ed. G. Patera, A.M.S., Rod Island, 1998, 207–246 | MR
[4] Kolomeikina E. V., “Lokalnye usloviya pravilnosti razbieniya evklidovoi ploskosti”, Chebyshevskii sbornik, 5:3(11) (2004), 31–51 | MR