On a generalization of the concept of polyadic numbers
Čebyševskij sbornik, Tome 10 (2009) no. 2, pp. 109-122

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we investigate several constructions of a polyadic numbers that allow to construct some generalization — a ring of halfpolyadic numbers, for which we extend a classic results: build a measure theory, a theory of integration, which is tightly bounded with probability properties of integers and real numbers.
@article{CHEB_2009_10_2_a4,
     author = {I. Y. Sukharev},
     title = {On a generalization of the concept of polyadic numbers},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {109--122},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2009_10_2_a4/}
}
TY  - JOUR
AU  - I. Y. Sukharev
TI  - On a generalization of the concept of polyadic numbers
JO  - Čebyševskij sbornik
PY  - 2009
SP  - 109
EP  - 122
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2009_10_2_a4/
LA  - ru
ID  - CHEB_2009_10_2_a4
ER  - 
%0 Journal Article
%A I. Y. Sukharev
%T On a generalization of the concept of polyadic numbers
%J Čebyševskij sbornik
%D 2009
%P 109-122
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2009_10_2_a4/
%G ru
%F CHEB_2009_10_2_a4
I. Y. Sukharev. On a generalization of the concept of polyadic numbers. Čebyševskij sbornik, Tome 10 (2009) no. 2, pp. 109-122. http://geodesic.mathdoc.fr/item/CHEB_2009_10_2_a4/