On a generalization of the concept of polyadic numbers
Čebyševskij sbornik, Tome 10 (2009) no. 2, pp. 109-122
Voir la notice de l'article provenant de la source Math-Net.Ru
In this article we investigate several constructions of a polyadic numbers that allow to construct some generalization — a ring of halfpolyadic numbers, for which we extend a classic results: build a measure theory, a theory of integration, which is tightly bounded with probability properties of integers and real numbers.
@article{CHEB_2009_10_2_a4,
author = {I. Y. Sukharev},
title = {On a generalization of the concept of polyadic numbers},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {109--122},
publisher = {mathdoc},
volume = {10},
number = {2},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2009_10_2_a4/}
}
I. Y. Sukharev. On a generalization of the concept of polyadic numbers. Čebyševskij sbornik, Tome 10 (2009) no. 2, pp. 109-122. http://geodesic.mathdoc.fr/item/CHEB_2009_10_2_a4/