On the connectedness of random distance graphs of a special form
Čebyševskij sbornik, Tome 10 (2009) no. 1, pp. 95-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{CHEB_2009_10_1_a7,
     author = {A. R. Yarmukhametov},
     title = {On the connectedness of random distance graphs of a special form},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {95--108},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2009_10_1_a7/}
}
TY  - JOUR
AU  - A. R. Yarmukhametov
TI  - On the connectedness of random distance graphs of a special form
JO  - Čebyševskij sbornik
PY  - 2009
SP  - 95
EP  - 108
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2009_10_1_a7/
LA  - ru
ID  - CHEB_2009_10_1_a7
ER  - 
%0 Journal Article
%A A. R. Yarmukhametov
%T On the connectedness of random distance graphs of a special form
%J Čebyševskij sbornik
%D 2009
%P 95-108
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2009_10_1_a7/
%G ru
%F CHEB_2009_10_1_a7
A. R. Yarmukhametov. On the connectedness of random distance graphs of a special form. Čebyševskij sbornik, Tome 10 (2009) no. 1, pp. 95-108. http://geodesic.mathdoc.fr/item/CHEB_2009_10_1_a7/

[1] Alon N., Spenser Dzh., Veroyatnostnyi metod, Binom, M., 2007

[2] Erdős P., Rényi A., “On the evolution of random graphs”, Magyar Tud. Akad. Mat. Kutató Int. Közl., 5 (1960), 17–61 | MR | Zbl

[3] Bollobas B., Random Graphs, Academic Press, New York, 1985 | MR | Zbl

[4] Kolchin V. F., Sluchainye grafy, Fizmatlit, M., 2004

[5] Raigorodskii A. M., Lineino-algebraicheskii metod v kombinatorike, MTsNMO, M., 2007

[6] Raigorodskii A. M., “Problema Borsuka i khromaticheskie chisla nekotorykh metricheskikh prostranstv”, UMN, 56:1(337) (2001), 107–146 | DOI | MR | Zbl

[7] Karp R., “The transitive closure of a random digraph”, Random structures and Algorithms, 1 (1990), 73–94 | DOI | MR