An asymptotic formula for the cardinality of a difference subset of the multidimensional torus $\mathbb{Z}_3^n$
Čebyševskij sbornik, Tome 10 (2009) no. 1, pp. 4-8
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{CHEB_2009_10_1_a0,
author = {E. P. Davletyarova and A. A. Zhukova},
title = {An asymptotic formula for the cardinality of a difference subset of the multidimensional torus $\mathbb{Z}_3^n$},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {4--8},
year = {2009},
volume = {10},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2009_10_1_a0/}
}
TY - JOUR
AU - E. P. Davletyarova
AU - A. A. Zhukova
TI - An asymptotic formula for the cardinality of a difference subset of the multidimensional torus $\mathbb{Z}_3^n$
JO - Čebyševskij sbornik
PY - 2009
SP - 4
EP - 8
VL - 10
IS - 1
UR - http://geodesic.mathdoc.fr/item/CHEB_2009_10_1_a0/
LA - ru
ID - CHEB_2009_10_1_a0
ER -
%0 Journal Article
%A E. P. Davletyarova
%A A. A. Zhukova
%T An asymptotic formula for the cardinality of a difference subset of the multidimensional torus $\mathbb{Z}_3^n$
%J Čebyševskij sbornik
%D 2009
%P 4-8
%V 10
%N 1
%U http://geodesic.mathdoc.fr/item/CHEB_2009_10_1_a0/
%G ru
%F CHEB_2009_10_1_a0
E. P. Davletyarova; A. A. Zhukova. An asymptotic formula for the cardinality of a difference subset of the multidimensional torus $\mathbb{Z}_3^n$. Čebyševskij sbornik, Tome 10 (2009) no. 1, pp. 4-8. http://geodesic.mathdoc.fr/item/CHEB_2009_10_1_a0/
[1] Chaimovich M., “Subset-sum problems with different summands: computation”, Discrete Applied Mathematics, 27:3 (1990), 277–282 | DOI | MR | Zbl
[2] Folkman J., “On the representation of integers as sums of distinct terms from a fixed sequence”, Canad. J. Math., 18 (1966), 643–655 | DOI | MR | Zbl
[3] Freiman G. A., “Subset-sum problem with different summands”, Congressus Numerantium, 70 (1990), 207–215 | MR | Zbl
[4] Hamidoune Y. O., “Subsets with small sums in abelian groups, I”, European J. Combin., 18:5 (1997), 541–556 | DOI | MR | Zbl
[5] Davletyarova E. P., Zhukova A. A., Yudin A. A., “O maksimalnom mnozhestve bez parallelogrammov”, Vestnik SamGU. Estestvennonauchnaya seriya, 2009, no. 8(74), 5–14