The Waring--Goldbach problem
Čebyševskij sbornik, Tome 9 (2008) no. 1, pp. 69-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{CHEB_2008_9_1_a6,
     author = {E. A. Burlakova},
     title = {The {Waring--Goldbach} problem},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {69--79},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2008_9_1_a6/}
}
TY  - JOUR
AU  - E. A. Burlakova
TI  - The Waring--Goldbach problem
JO  - Čebyševskij sbornik
PY  - 2008
SP  - 69
EP  - 79
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2008_9_1_a6/
LA  - ru
ID  - CHEB_2008_9_1_a6
ER  - 
%0 Journal Article
%A E. A. Burlakova
%T The Waring--Goldbach problem
%J Čebyševskij sbornik
%D 2008
%P 69-79
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2008_9_1_a6/
%G ru
%F CHEB_2008_9_1_a6
E. A. Burlakova. The Waring--Goldbach problem. Čebyševskij sbornik, Tome 9 (2008) no. 1, pp. 69-79. http://geodesic.mathdoc.fr/item/CHEB_2008_9_1_a6/

[1] Vinogradov I. M., “Predstavlenie nechetnogo chisla summoi trekh prostykh chisel”, Dokl. AN SSSR, 15:6–7 (1937), 291–294

[2] Waring E., Meditationes algebraicae, Cambridge, 1770, 204–205; Dickson L. E., History of the theory of numbers, v. 2, New York, 1934, 717–729

[3] Hilbert D., “Beweis fur die Darstellbarkeit der ganzen Zahlen durch eine feste Anzahl $n$-ter Potenzen”, Math. Ann., 67 (1909), 281–300 | DOI | MR

[4] Vinogradov I. M., Metod trigonometricheskikh summ v teorii chisel, Nauka, M., 1971 | MR

[5] Vinogradov I. M., “Nekotorye obschie teoremy, otnosyaschiesya k teorii prostykh chisel”, Trudy Tbilisskogo matematicheskogo in-ta, 3, 1937

[6] Vinogradov I. M., Izbrannye trudy, Izd-vo AN SSSR, M., 1952, 428–433 | MR

[7] Chubarikov V. N., Mnogomernye problemy teorii prostykh chisel, Diss. na soiskanie uchenoi stepeni d. fiz.-mat. nauk, MGU im. Lomonosova, M., 1985

[8] Arkhipov G. I., Chubarikov V. N., “O chisle slagaemykh v additivnoi probleme Vinogradova i ee obobscheniyakh”, Sovremennye problemy teorii chisel i ee prilozheniya, IV Mezhdunarodnaya konferentsiya (Tula, 10–15 sentyabrya, 2002), 5–38 | MR