On a property of IA-automorphisms
Čebyševskij sbornik, Tome 8 (2007) no. 2, pp. 73-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: $IA$-automorphisms; finitely generated free groups; entropy.
@article{CHEB_2007_8_2_a6,
     author = {A. I. Nekritsukhin},
     title = {On a property of {IA-automorphisms}},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {73--75},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2007_8_2_a6/}
}
TY  - JOUR
AU  - A. I. Nekritsukhin
TI  - On a property of IA-automorphisms
JO  - Čebyševskij sbornik
PY  - 2007
SP  - 73
EP  - 75
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2007_8_2_a6/
LA  - ru
ID  - CHEB_2007_8_2_a6
ER  - 
%0 Journal Article
%A A. I. Nekritsukhin
%T On a property of IA-automorphisms
%J Čebyševskij sbornik
%D 2007
%P 73-75
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2007_8_2_a6/
%G ru
%F CHEB_2007_8_2_a6
A. I. Nekritsukhin. On a property of IA-automorphisms. Čebyševskij sbornik, Tome 8 (2007) no. 2, pp. 73-75. http://geodesic.mathdoc.fr/item/CHEB_2007_8_2_a6/

[1] Kolev B., Topological entropy and Burau representation, 8 Apr. 2003, arXiv: math/0304105v1 [math.DS] | MR

[2] de la Harpe P., Topics in geometry group theory, The university of Chicago Press, Chicago–London, 2000

[3] Birman J. S., Braids, links and mapping class groups, Ann. Math. Stud., 82, Prinston University Press, Prinston, 1974 | MR