Analogues of Titchmarsh's divisor problem
Čebyševskij sbornik, Tome 8 (2007) no. 2, pp. 44-55

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we give asymptotic formulae for sums of certain arithmetic functions (sum of divisor function; Euler's function) for numbers of type $p-1$.
@article{CHEB_2007_8_2_a4,
     author = {D. V. Goryashin},
     title = {Analogues of {Titchmarsh's} divisor problem},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {44--55},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2007_8_2_a4/}
}
TY  - JOUR
AU  - D. V. Goryashin
TI  - Analogues of Titchmarsh's divisor problem
JO  - Čebyševskij sbornik
PY  - 2007
SP  - 44
EP  - 55
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2007_8_2_a4/
LA  - ru
ID  - CHEB_2007_8_2_a4
ER  - 
%0 Journal Article
%A D. V. Goryashin
%T Analogues of Titchmarsh's divisor problem
%J Čebyševskij sbornik
%D 2007
%P 44-55
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2007_8_2_a4/
%G ru
%F CHEB_2007_8_2_a4
D. V. Goryashin. Analogues of Titchmarsh's divisor problem. Čebyševskij sbornik, Tome 8 (2007) no. 2, pp. 44-55. http://geodesic.mathdoc.fr/item/CHEB_2007_8_2_a4/