Limit theorems for the Estermann zeta-function.~IV
Čebyševskij sbornik, Tome 8 (2007) no. 2, pp. 148-161.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, a joint limit theorem in the space of meromorphic functions for Estermann zeta-functions is obtained. The limit measure in this theorem is explicitly given.
@article{CHEB_2007_8_2_a15,
     author = {Antanas Laurin\v{c}ikas and Renata Macaitien\.{e}},
     title = {Limit theorems for the {Estermann} {zeta-function.~IV}},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {148--161},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2007_8_2_a15/}
}
TY  - JOUR
AU  - Antanas Laurinčikas
AU  - Renata Macaitienė
TI  - Limit theorems for the Estermann zeta-function.~IV
JO  - Čebyševskij sbornik
PY  - 2007
SP  - 148
EP  - 161
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2007_8_2_a15/
LA  - en
ID  - CHEB_2007_8_2_a15
ER  - 
%0 Journal Article
%A Antanas Laurinčikas
%A Renata Macaitienė
%T Limit theorems for the Estermann zeta-function.~IV
%J Čebyševskij sbornik
%D 2007
%P 148-161
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2007_8_2_a15/
%G en
%F CHEB_2007_8_2_a15
Antanas Laurinčikas; Renata Macaitienė. Limit theorems for the Estermann zeta-function.~IV. Čebyševskij sbornik, Tome 8 (2007) no. 2, pp. 148-161. http://geodesic.mathdoc.fr/item/CHEB_2007_8_2_a15/

[1] A. Laurinčikas, “Limit theorems for the Estermann zeta-function, I”, Statist. Probab. Letters, 72:3 (2005), 227–235 | DOI | MR | Zbl

[2] A. Laurinčikas, “Limit theorems for the Estermann zeta-function, II”, Cent. Eur. J. Math., 3:4 (2005), 580–590 | DOI | MR | Zbl

[3] A. Laurinčikas, Limit theorems for the Estermann zeta-function, III, submitted

[4] P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968 | MR | Zbl

[5] J. B. Conway, Functions of One Complex Variable, Springer-Verlag, New York, 1973 | MR | Zbl

[6] A. Laurinčikas, Limit Theorems for the Riemann Zeta-Function, Kluwer Academic Publishers, Dordrecht–Boston–London, 1996 | MR

[7] H. Cramér, M. R. Leadbetter, Stationary and Related Stochastic Processes, Wiley, New York, 1967 | MR | Zbl

[8] A. Laurinčikas, R. Garunkštis, The Lerch Zeta-Function, Kluwer Academic Publishers, Dordrecht–Boston–London, 2002 | MR | Zbl