Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2007_8_2_a15, author = {Antanas Laurin\v{c}ikas and Renata Macaitien\.{e}}, title = {Limit theorems for the {Estermann} {zeta-function.~IV}}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {148--161}, publisher = {mathdoc}, volume = {8}, number = {2}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHEB_2007_8_2_a15/} }
Antanas Laurinčikas; Renata Macaitienė. Limit theorems for the Estermann zeta-function.~IV. Čebyševskij sbornik, Tome 8 (2007) no. 2, pp. 148-161. http://geodesic.mathdoc.fr/item/CHEB_2007_8_2_a15/
[1] A. Laurinčikas, “Limit theorems for the Estermann zeta-function, I”, Statist. Probab. Letters, 72:3 (2005), 227–235 | DOI | MR | Zbl
[2] A. Laurinčikas, “Limit theorems for the Estermann zeta-function, II”, Cent. Eur. J. Math., 3:4 (2005), 580–590 | DOI | MR | Zbl
[3] A. Laurinčikas, Limit theorems for the Estermann zeta-function, III, submitted
[4] P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968 | MR | Zbl
[5] J. B. Conway, Functions of One Complex Variable, Springer-Verlag, New York, 1973 | MR | Zbl
[6] A. Laurinčikas, Limit Theorems for the Riemann Zeta-Function, Kluwer Academic Publishers, Dordrecht–Boston–London, 1996 | MR
[7] H. Cramér, M. R. Leadbetter, Stationary and Related Stochastic Processes, Wiley, New York, 1967 | MR | Zbl
[8] A. Laurinčikas, R. Garunkštis, The Lerch Zeta-Function, Kluwer Academic Publishers, Dordrecht–Boston–London, 2002 | MR | Zbl