Bad-approximable points and distribution of discriminants of the product of linear integer polynomials
Čebyševskij sbornik, Tome 8 (2007) no. 2, pp. 140-147
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper is devoted to the investigation of the distribution of the product of linear integer polynomials. The described method is based on the construction of the set of bad-approximable points, that has a big measure.
@article{CHEB_2007_8_2_a14,
author = {V. Bernik and F. G\"otze and O. Kukso},
title = {Bad-approximable points and distribution of discriminants of the product of linear integer polynomials},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {140--147},
year = {2007},
volume = {8},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CHEB_2007_8_2_a14/}
}
TY - JOUR AU - V. Bernik AU - F. Götze AU - O. Kukso TI - Bad-approximable points and distribution of discriminants of the product of linear integer polynomials JO - Čebyševskij sbornik PY - 2007 SP - 140 EP - 147 VL - 8 IS - 2 UR - http://geodesic.mathdoc.fr/item/CHEB_2007_8_2_a14/ LA - en ID - CHEB_2007_8_2_a14 ER -
V. Bernik; F. Götze; O. Kukso. Bad-approximable points and distribution of discriminants of the product of linear integer polynomials. Čebyševskij sbornik, Tome 8 (2007) no. 2, pp. 140-147. http://geodesic.mathdoc.fr/item/CHEB_2007_8_2_a14/
[1] Sprindzuk V. G., Mahler's problem in metric Number Theory, Nauka i Tehnika, Minsk, 1967 | MR
[2] Bernik V. I., Dodson M. M., Metric Diophantine approximation on manifolds, Cambridge Tracts in Math., 137, Cambridge Univ. Press, 1999 | MR | Zbl
[3] Györy K., “Polynomials and binary forms with given discriminant”, Publ. Math. Debrecen, 69:4 (2006), 473–499 | MR | Zbl
[4] Keipers L., Niederreiter G., Uniform distributin of sequences, Pure and Applied Mathematics, John Wiley Sons, New York–London–Sydney, 1974, 390 pp. | MR