Bad-approximable points and distribution of discriminants of the product of linear integer polynomials
Čebyševskij sbornik, Tome 8 (2007) no. 2, pp. 140-147.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the investigation of the distribution of the product of linear integer polynomials. The described method is based on the construction of the set of bad-approximable points, that has a big measure.
@article{CHEB_2007_8_2_a14,
     author = {V. Bernik and F. G\"otze and O. Kukso},
     title = {Bad-approximable points and distribution of discriminants of the product of linear integer polynomials},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {140--147},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2007_8_2_a14/}
}
TY  - JOUR
AU  - V. Bernik
AU  - F. Götze
AU  - O. Kukso
TI  - Bad-approximable points and distribution of discriminants of the product of linear integer polynomials
JO  - Čebyševskij sbornik
PY  - 2007
SP  - 140
EP  - 147
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2007_8_2_a14/
LA  - en
ID  - CHEB_2007_8_2_a14
ER  - 
%0 Journal Article
%A V. Bernik
%A F. Götze
%A O. Kukso
%T Bad-approximable points and distribution of discriminants of the product of linear integer polynomials
%J Čebyševskij sbornik
%D 2007
%P 140-147
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2007_8_2_a14/
%G en
%F CHEB_2007_8_2_a14
V. Bernik; F. Götze; O. Kukso. Bad-approximable points and distribution of discriminants of the product of linear integer polynomials. Čebyševskij sbornik, Tome 8 (2007) no. 2, pp. 140-147. http://geodesic.mathdoc.fr/item/CHEB_2007_8_2_a14/

[1] Sprindzuk V. G., Mahler's problem in metric Number Theory, Nauka i Tehnika, Minsk, 1967 | MR

[2] Bernik V. I., Dodson M. M., Metric Diophantine approximation on manifolds, Cambridge Tracts in Math., 137, Cambridge Univ. Press, 1999 | MR | Zbl

[3] Györy K., “Polynomials and binary forms with given discriminant”, Publ. Math. Debrecen, 69:4 (2006), 473–499 | MR | Zbl

[4] Keipers L., Niederreiter G., Uniform distributin of sequences, Pure and Applied Mathematics, John Wiley Sons, New York–London–Sydney, 1974, 390 pp. | MR