Bad-approximable points and distribution of discriminants of the product of linear integer polynomials
Čebyševskij sbornik, Tome 8 (2007) no. 2, pp. 140-147 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is devoted to the investigation of the distribution of the product of linear integer polynomials. The described method is based on the construction of the set of bad-approximable points, that has a big measure.
@article{CHEB_2007_8_2_a14,
     author = {V. Bernik and F. G\"otze and O. Kukso},
     title = {Bad-approximable points and distribution of discriminants of the product of linear integer polynomials},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {140--147},
     year = {2007},
     volume = {8},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2007_8_2_a14/}
}
TY  - JOUR
AU  - V. Bernik
AU  - F. Götze
AU  - O. Kukso
TI  - Bad-approximable points and distribution of discriminants of the product of linear integer polynomials
JO  - Čebyševskij sbornik
PY  - 2007
SP  - 140
EP  - 147
VL  - 8
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CHEB_2007_8_2_a14/
LA  - en
ID  - CHEB_2007_8_2_a14
ER  - 
%0 Journal Article
%A V. Bernik
%A F. Götze
%A O. Kukso
%T Bad-approximable points and distribution of discriminants of the product of linear integer polynomials
%J Čebyševskij sbornik
%D 2007
%P 140-147
%V 8
%N 2
%U http://geodesic.mathdoc.fr/item/CHEB_2007_8_2_a14/
%G en
%F CHEB_2007_8_2_a14
V. Bernik; F. Götze; O. Kukso. Bad-approximable points and distribution of discriminants of the product of linear integer polynomials. Čebyševskij sbornik, Tome 8 (2007) no. 2, pp. 140-147. http://geodesic.mathdoc.fr/item/CHEB_2007_8_2_a14/

[1] Sprindzuk V. G., Mahler's problem in metric Number Theory, Nauka i Tehnika, Minsk, 1967 | MR

[2] Bernik V. I., Dodson M. M., Metric Diophantine approximation on manifolds, Cambridge Tracts in Math., 137, Cambridge Univ. Press, 1999 | MR | Zbl

[3] Györy K., “Polynomials and binary forms with given discriminant”, Publ. Math. Debrecen, 69:4 (2006), 473–499 | MR | Zbl

[4] Keipers L., Niederreiter G., Uniform distributin of sequences, Pure and Applied Mathematics, John Wiley Sons, New York–London–Sydney, 1974, 390 pp. | MR