Some properties of $p^k$-odd integer polynomials
Čebyševskij sbornik, Tome 8 (2007) no. 2, pp. 121-127.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{CHEB_2007_8_2_a12,
     author = {B. G. Fedorishchev},
     title = {Some properties of $p^k$-odd integer polynomials},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {121--127},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2007_8_2_a12/}
}
TY  - JOUR
AU  - B. G. Fedorishchev
TI  - Some properties of $p^k$-odd integer polynomials
JO  - Čebyševskij sbornik
PY  - 2007
SP  - 121
EP  - 127
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2007_8_2_a12/
LA  - ru
ID  - CHEB_2007_8_2_a12
ER  - 
%0 Journal Article
%A B. G. Fedorishchev
%T Some properties of $p^k$-odd integer polynomials
%J Čebyševskij sbornik
%D 2007
%P 121-127
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2007_8_2_a12/
%G ru
%F CHEB_2007_8_2_a12
B. G. Fedorishchev. Some properties of $p^k$-odd integer polynomials. Čebyševskij sbornik, Tome 8 (2007) no. 2, pp. 121-127. http://geodesic.mathdoc.fr/item/CHEB_2007_8_2_a12/

[1] Hua Loo-Keng, Additiv Primzahltheorie, Teubner, Leipzig, 1959

[2] Mitkin D. A., “Otsenka chisla slagaemykh v probleme Varinga dlya mnogochlenov obschego vida”, Izv. AN SSSR. Ser. mat., 50 (1986), 1015–1053 | MR

[3] Gavrilov G. P., Sapozhenko A. A., Zadachi i uprazhneniya po diskretnoi matematike, Ucheb. posobie, 3-e izd., pererab., Fizmatlit, M., 2006

[4] Borevich Z. I., Shafarevich I. R., Teoriya chisel, Nauka, M., 1972 | MR