Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2007_8_2_a11, author = {B. G. Fedorishchev}, title = {On {Waring's} problem for odd polynomials}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {109--120}, publisher = {mathdoc}, volume = {8}, number = {2}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2007_8_2_a11/} }
B. G. Fedorishchev. On Waring's problem for odd polynomials. Čebyševskij sbornik, Tome 8 (2007) no. 2, pp. 109-120. http://geodesic.mathdoc.fr/item/CHEB_2007_8_2_a11/
[1] Waring E., Meditationes Algebraicae, Cambridge University Press, Cambridge, 1770, 204–205
[2] Hilbert D., “Beweis für die Darstellbarkeit der ganzen Zahlen durch eine feste Anzahl n-ter Potenzen (Waringsches Problem)”, Math. Ann., 67 (1909) | DOI | MR | Zbl
[3] Hardy G. H., Littlewood J. E., “A new solution of Waring's problem”, Quart. J. of Pure and Appl. Math., 48 (1920), 272–293
[4] Vinogradov I. M., Metod trigonometricheskikh summ v teorii chisel, Nauka, M., 1980 | MR
[5] Mitkin D. A., “Otsenka chisla slagaemykh v probleme Varinga dlya mnogochlenov obschego vida”, Izv. AN SSSR. Ser. mat., 50 (1986), 1015–1053 | MR
[6] Khua Lo-gen, Metod trigonometricheskikh summ i ego primenenie v teorii chisel, Mir, M., 1964, 188 pp. | MR
[7] Hua L.-K., “On Waring problem with cubic polynomial summands”, J. Indian Math. Soc. (N.C.), 4 (1940), 127–135 | MR
[8] Hua L.-K., “On a generalized Waring problem”, Proc. J. London Math. Soc., Ser. 2, 43 (1937), 161–182 | MR
[9] Hua L.-K., “On Waring's problem with polynomial summands”, Amer. J. of Math., 58 (1936), 553–562 | DOI | MR
[10] Hua L.-K., Additiv Primzahltheorie, Teubner, Leipzig, 1959
[11] Gavrilov G. P., Sapozhenko A. A., Zadachi i uprazhneniya po diskretnoi matematike, Ucheb. posobie, Fizmatlit, M., 2006, 416 pp.
[12] Borevich Z. I., Shafarevich I. R., Teoriya chisel, Nauka, M., 1985, 507 pp. | MR | Zbl