On the irrationality measure of the number $\log 5+\frac{\pi}{2}$ and some other numbers
Čebyševskij sbornik, Tome 8 (2007) no. 2, pp. 97-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we find estimates for irrationality measures of the number $\log5+\frac{\pi}{2}$ and the values of the function $\arctan x$ in points $\frac{1}{n}$ where $n \in{\mathbb N}$, $n\geq3$.
@article{CHEB_2007_8_2_a10,
     author = {E. B. Tomashevskaya},
     title = {On the irrationality measure of the number $\log 5+\frac{\pi}{2}$ and some other numbers},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {97--108},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2007_8_2_a10/}
}
TY  - JOUR
AU  - E. B. Tomashevskaya
TI  - On the irrationality measure of the number $\log 5+\frac{\pi}{2}$ and some other numbers
JO  - Čebyševskij sbornik
PY  - 2007
SP  - 97
EP  - 108
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2007_8_2_a10/
LA  - ru
ID  - CHEB_2007_8_2_a10
ER  - 
%0 Journal Article
%A E. B. Tomashevskaya
%T On the irrationality measure of the number $\log 5+\frac{\pi}{2}$ and some other numbers
%J Čebyševskij sbornik
%D 2007
%P 97-108
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2007_8_2_a10/
%G ru
%F CHEB_2007_8_2_a10
E. B. Tomashevskaya. On the irrationality measure of the number $\log 5+\frac{\pi}{2}$ and some other numbers. Čebyševskij sbornik, Tome 8 (2007) no. 2, pp. 97-108. http://geodesic.mathdoc.fr/item/CHEB_2007_8_2_a10/

[1] Salikhov V. Kh., “O mere irratsionalnosti $\log3$”, DAN RF, 417:6 (2007), 1–3

[2] Salikhov V. Kh., “O mere irratsionalnosti chisla $\pi$”, UMN (to appear)

[3] Tomashevskaya E. B., “O diofantovykh priblizheniya znachenii funktsii $\log x$”, Fund. i prikl. mat. (to appear)

[4] Hata M., “Irrationality measures of the values of hypergeometric functions”, Acta Arith., LX (1992), 335–347 | MR | Zbl

[5] Hata M., “Rational approximations to $\pi$ and some other numbers”, Acta Arith., 63:4 (1993), 335–349 | MR | Zbl

[6] Heimonen A., Matala-Aho T., Väänänen K., “On irrationality measures of the values of Gauss hypergeometric function”, Manuscripta Math., 81:1/2 (1993), 183–202 | DOI | MR | Zbl