Effective estimates for generalized linear global relations
Čebyševskij sbornik, Tome 8 (2007) no. 2, pp. 13-23

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents a theorem which gives a completely effective solution to the problem of the non-existence of a linear generalized global relation.
@article{CHEB_2007_8_2_a1,
     author = {T. R. Azamatov},
     title = {Effective estimates for generalized linear global relations},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {13--23},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2007_8_2_a1/}
}
TY  - JOUR
AU  - T. R. Azamatov
TI  - Effective estimates for generalized linear global relations
JO  - Čebyševskij sbornik
PY  - 2007
SP  - 13
EP  - 23
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2007_8_2_a1/
LA  - ru
ID  - CHEB_2007_8_2_a1
ER  - 
%0 Journal Article
%A T. R. Azamatov
%T Effective estimates for generalized linear global relations
%J Čebyševskij sbornik
%D 2007
%P 13-23
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2007_8_2_a1/
%G ru
%F CHEB_2007_8_2_a1
T. R. Azamatov. Effective estimates for generalized linear global relations. Čebyševskij sbornik, Tome 8 (2007) no. 2, pp. 13-23. http://geodesic.mathdoc.fr/item/CHEB_2007_8_2_a1/