Approximation of exponential sums in the problem on the oscillator motion caused by pushes
Čebyševskij sbornik, Tome 6 (2005) no. 3, pp. 205-224.

Voir la notice de l'article provenant de la source Math-Net.Ru

The application of the Hardy-Littlewood-Vinogradov-Van der Corput theorem on the approximation of exponential sums by shorter ones to the solution of the problem on quasiperiodic pushes acting on harmonic oscillator is considered. New asymptotic formulas for the solution of the problem for the pushes of various forms in the presence and in the absence of friction are obtained.
@article{CHEB_2005_6_3_a16,
     author = {E. A. Karatsuba},
     title = {Approximation of exponential sums in the problem on the oscillator motion caused by pushes},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {205--224},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2005_6_3_a16/}
}
TY  - JOUR
AU  - E. A. Karatsuba
TI  - Approximation of exponential sums in the problem on the oscillator motion caused by pushes
JO  - Čebyševskij sbornik
PY  - 2005
SP  - 205
EP  - 224
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2005_6_3_a16/
LA  - en
ID  - CHEB_2005_6_3_a16
ER  - 
%0 Journal Article
%A E. A. Karatsuba
%T Approximation of exponential sums in the problem on the oscillator motion caused by pushes
%J Čebyševskij sbornik
%D 2005
%P 205-224
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2005_6_3_a16/
%G en
%F CHEB_2005_6_3_a16
E. A. Karatsuba. Approximation of exponential sums in the problem on the oscillator motion caused by pushes. Čebyševskij sbornik, Tome 6 (2005) no. 3, pp. 205-224. http://geodesic.mathdoc.fr/item/CHEB_2005_6_3_a16/