Free abelian extensions of $S_p$-permutable algebras
Čebyševskij sbornik, Tome 3 (2002) no. 1, pp. 49-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{CHEB_2002_3_1_a7,
     author = {P. B. Zhdanovich},
     title = {Free abelian extensions of $S_p$-permutable algebras},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {49--71},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2002_3_1_a7/}
}
TY  - JOUR
AU  - P. B. Zhdanovich
TI  - Free abelian extensions of $S_p$-permutable algebras
JO  - Čebyševskij sbornik
PY  - 2002
SP  - 49
EP  - 71
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2002_3_1_a7/
LA  - ru
ID  - CHEB_2002_3_1_a7
ER  - 
%0 Journal Article
%A P. B. Zhdanovich
%T Free abelian extensions of $S_p$-permutable algebras
%J Čebyševskij sbornik
%D 2002
%P 49-71
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2002_3_1_a7/
%G ru
%F CHEB_2002_3_1_a7
P. B. Zhdanovich. Free abelian extensions of $S_p$-permutable algebras. Čebyševskij sbornik, Tome 3 (2002) no. 1, pp. 49-71. http://geodesic.mathdoc.fr/item/CHEB_2002_3_1_a7/

[1] Freese R., McKenzie R., “Commutator theory for congruence modular varieties”, London Math. Soc. Lecture Notes Ser., 125, 1987 | MR | Zbl

[2] Pinus A. G., Kongruents-modulyarnye mnogoobraziya algebr, Izd-vo Irkutskogo un-ta, Irkutsk, 1986 | MR | Zbl

[3] Zamyatin A. P., Mnogoobraziya s ogranicheniyami na reshetku kongruentsii, Izd-vo UrGU, Sverdlovsk, 1987 | MR

[4] Zhdanovich P. B., “Svobodnye abelevy rasshireniya $\langle p, S\rangle$ algebr”, Universalnaya algebra i ee prilozheniya, Sb. trudov mezhdunar. sem. pamyati L. A. Skornyakova, Volgograd, 2000, 73–80

[5] Artamonov V. A., “Predstavlenie Magnusa v kongruents-modulyarnykh mnogoobraziyakh”, Sib. mat. zhurnal., 38:5 (1997), 978–995 | MR | Zbl

[6] Chakrabarti S., “Gomomorfizmy svobodnykh razreshimykh algebr s odnoi ternarnoi maltsevskoi operatsiei”, UMN, 48:3 (1993), 207–208 | MR | Zbl