On the approximability of some free products with an amalgamated subgroup by finite $p$-groups
Čebyševskij sbornik, Tome 3 (2002) no. 1, pp. 97-102.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{CHEB_2002_3_1_a12,
     author = {E. V. Sokolov},
     title = {On the approximability of some free products with an amalgamated subgroup by finite $p$-groups},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {97--102},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2002_3_1_a12/}
}
TY  - JOUR
AU  - E. V. Sokolov
TI  - On the approximability of some free products with an amalgamated subgroup by finite $p$-groups
JO  - Čebyševskij sbornik
PY  - 2002
SP  - 97
EP  - 102
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2002_3_1_a12/
LA  - ru
ID  - CHEB_2002_3_1_a12
ER  - 
%0 Journal Article
%A E. V. Sokolov
%T On the approximability of some free products with an amalgamated subgroup by finite $p$-groups
%J Čebyševskij sbornik
%D 2002
%P 97-102
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2002_3_1_a12/
%G ru
%F CHEB_2002_3_1_a12
E. V. Sokolov. On the approximability of some free products with an amalgamated subgroup by finite $p$-groups. Čebyševskij sbornik, Tome 3 (2002) no. 1, pp. 97-102. http://geodesic.mathdoc.fr/item/CHEB_2002_3_1_a12/

[1] Maltsev A. I., “O gomomorfizmakh na konechnye gruppy”, Uchen. zap. Ivan. gos. ped. in-ta, 18 (1958), 49–60

[2] Baumslag G., “On the residual finiteness of generalized free products of nilpotent groups”, Trans. Amer. Math. Soc., 106 (1963), 193–209 | MR | Zbl

[3] Higman G., “Amalgams of $p$-groups”, J. Algebra, 1 (1964), 301–305 | MR | Zbl

[4] Loginova E. D., “Finitnaya approksimiruemost svobodnogo proizvedeniya dvukh grupp s kommutiruyuschimi podgruppami”, Sib. matem. zh., 40:2 (1999), 395–407 | MR | Zbl

[5] Yakushev A. V., “Approksimiruemost konechnymi $p$-gruppami rasscheplyayuschikhsya rasshirenii grupp”, Nauch. tr. Ivan. gos. un-ta. Matematika, 2000, no. 3, 119–124