Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2002_3_1_a11, author = {S. S. Ryshkov}, title = {On the theory of the cone of positivity and the theory of the perfect polyhedra $\Pi(n)$ and $\mu_n(m)$}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {84--96}, publisher = {mathdoc}, volume = {3}, number = {1}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2002_3_1_a11/} }
TY - JOUR AU - S. S. Ryshkov TI - On the theory of the cone of positivity and the theory of the perfect polyhedra $\Pi(n)$ and $\mu_n(m)$ JO - Čebyševskij sbornik PY - 2002 SP - 84 EP - 96 VL - 3 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2002_3_1_a11/ LA - ru ID - CHEB_2002_3_1_a11 ER -
S. S. Ryshkov. On the theory of the cone of positivity and the theory of the perfect polyhedra $\Pi(n)$ and $\mu_n(m)$. Čebyševskij sbornik, Tome 3 (2002) no. 1, pp. 84-96. http://geodesic.mathdoc.fr/item/CHEB_2002_3_1_a11/
[1] Ryshkov S. S., Baranovskii E. P., “Klassicheskie metody teorii reshetchatykh upakovok”, UMN, 34:4 (1979), 2–63 | MR
[2] Voronoi G. F., “O nekotorykh svoistvakh polozhitelnykh sovershennykh form”, Sobr. soch., v. 2, Izd-vo AN USSR, Kiev, 1952, 239–368
[3] Voronoi G., “Sur quelques proprietes des formes quadratiques posiyives parfaites”, J. reine und angew. Math., 134 (1908), 198–287 ; 136 (1909), 67–179 | Zbl
[4] Ryshkov S. S., “Poliedr $\mu (n)$ i nekotorye ekstremalnye zadachi geometrii chisel”, DAN SSSR, 194:3 (1970), 138–161
[5] Delone B. N., “Geometriya polozhitelnykh kvadratichnykh form”, UMN, 1937, no. 3, 16–62
[6] Delone B. N., “Geometriya polozhitelnykh kvadratichnykh form”, UMN, 1938, no. 4, 102–164
[7] Shtogrin M. I., “Lokalno kvaziplotneishie reshetchatye upakovki sharov”, DAN SSSR, 218:1 (1974), 62–65 | Zbl
[8] Ryshkov S. S., “K teorii konusa polozhitelnosti i poliedra Voronogo”, Sovremennye problemy teorii chisel, Mezhdunar. konf., Tez. dokl. (Rossiya, Tula, 20 sent.–25 sent. 1993 g.), Tula, 1993, 138
[9] Wickelgren K., Linear transformations preserving the Voronoi polyhedron
[10] Delone B. N., Ustnoe soobschenie, 1977