On the theory of the cone of positivity and the theory of the perfect polyhedra $\Pi(n)$ and $\mu_n(m)$
Čebyševskij sbornik, Tome 3 (2002) no. 1, pp. 84-96

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{CHEB_2002_3_1_a11,
     author = {S. S. Ryshkov},
     title = {On the theory of the cone of positivity and the theory of the perfect polyhedra $\Pi(n)$ and $\mu_n(m)$},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {84--96},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2002_3_1_a11/}
}
TY  - JOUR
AU  - S. S. Ryshkov
TI  - On the theory of the cone of positivity and the theory of the perfect polyhedra $\Pi(n)$ and $\mu_n(m)$
JO  - Čebyševskij sbornik
PY  - 2002
SP  - 84
EP  - 96
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2002_3_1_a11/
LA  - ru
ID  - CHEB_2002_3_1_a11
ER  - 
%0 Journal Article
%A S. S. Ryshkov
%T On the theory of the cone of positivity and the theory of the perfect polyhedra $\Pi(n)$ and $\mu_n(m)$
%J Čebyševskij sbornik
%D 2002
%P 84-96
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2002_3_1_a11/
%G ru
%F CHEB_2002_3_1_a11
S. S. Ryshkov. On the theory of the cone of positivity and the theory of the perfect polyhedra $\Pi(n)$ and $\mu_n(m)$. Čebyševskij sbornik, Tome 3 (2002) no. 1, pp. 84-96. http://geodesic.mathdoc.fr/item/CHEB_2002_3_1_a11/