On the conjugacy of finitely generated subgroups of a free group
Čebyševskij sbornik, Tome 3 (2002) no. 1, pp. 8-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{CHEB_2002_3_1_a1,
     author = {Yu. N. Alekseev and D. I. Moldavanskiǐ},
     title = {On the conjugacy of finitely generated subgroups of a free group},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {8--10},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2002_3_1_a1/}
}
TY  - JOUR
AU  - Yu. N. Alekseev
AU  - D. I. Moldavanskiǐ
TI  - On the conjugacy of finitely generated subgroups of a free group
JO  - Čebyševskij sbornik
PY  - 2002
SP  - 8
EP  - 10
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2002_3_1_a1/
LA  - ru
ID  - CHEB_2002_3_1_a1
ER  - 
%0 Journal Article
%A Yu. N. Alekseev
%A D. I. Moldavanskiǐ
%T On the conjugacy of finitely generated subgroups of a free group
%J Čebyševskij sbornik
%D 2002
%P 8-10
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2002_3_1_a1/
%G ru
%F CHEB_2002_3_1_a1
Yu. N. Alekseev; D. I. Moldavanskiǐ. On the conjugacy of finitely generated subgroups of a free group. Čebyševskij sbornik, Tome 3 (2002) no. 1, pp. 8-10. http://geodesic.mathdoc.fr/item/CHEB_2002_3_1_a1/

[1] Kargapolov M. I., Merzlyakov Yu. I., Osnovy teorii grupp, Nauka, M., 1982 | MR | Zbl

[2] Remeslennikov V. N., “Sopryazhennost podgrupp v nilpotentnykh gruppakh”, Algebra i logika, 6:2 (1967), 61–76 | MR

[3] Grunewald F., Segal D., “Conjugacy in polycyclic groups”, Commun. Algebra, 6 (1978), 775–798 | MR

[4] Maltsev A. I., “O gomomopfizmakh na konechnye gpuppy”, Uchen. zap. Ivan. gos. ped. in-ta, 18, Ivanovo, 1958, 49–60

[5] Moldavanskii D. I., “Sopryazhennost podgrupp svobodnoi gruppy”, Algebra i logika, 8:6 (1969), 691–694 | MR

[6] Lindon R., Shupp P., Kombinatornaya teoriya grupp, Mir, M., 1980 | MR

[7] Moldavanskii D. I., “O finitnoi otdelimosti podgrupp”, Ivanov. gos. un-t. 20 let, Yubil. sb. nauch. statei, v. 2, Ivanovo, 1993, 18–23