@article{CHEB_2001_1_1_a2,
author = {I. M. Kozlov},
title = {The mean value theorem of {I.} {M.~Vinogradov} for {Gaussian} numbers},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {25--39},
year = {2001},
volume = {1},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2001_1_1_a2/}
}
I. M. Kozlov. The mean value theorem of I. M. Vinogradov for Gaussian numbers. Čebyševskij sbornik, Tome 1 (2001) no. 1, pp. 25-39. http://geodesic.mathdoc.fr/item/CHEB_2001_1_1_a2/
[1] B.J. Birch, “Waring's problem in algebraic number”, Proc. Cam. Phil. Soc., 5 (1961), 449–459 | DOI | MR
[2] I.M. Vinogradov, Izbrannye trudy, Izd-vo AN SSSR, 1953
[3] O. Korner, “Über Mittelwerte trigonometrischen Zahlkorpern”, Math. Ann., 147 (1962), 205–309 | DOI | MR
[4] Y. Eda, “On the meanvalue theorem in an algebraic number field”, Jap. J. Math., 1967, 5–21 | MR | Zbl
[5] A.A. Karatsuba, Osnovy analiticheskoi teorii chisel, Nauka, M., 1976
[6] Hardy Wright, Introduction to the theory of numbers, Clarendon press, Oxford, 1954 | MR | Zbl
[7] I.M. Kozlov, “O raspredelenii prostykh chisel v nekotorykh arifmeticheskikh progressiyakh”, Vestn. Mosk. Un-ta., Ser. mat. mekh., 2002, no. 1 | Zbl
[8] A.I. Kostrikin, Vvedenie v algebru, Nauka, M., 1977
[9] E. Landau, Einfürung in die elementare und analytishe Theorie der algebraishen Zahlen und die Ideale, B.G. Teubner, Leipzig und Berlin, 1918 | Zbl