The mean value theorem of I.\,M.~Vinogradov for Gaussian numbers
Čebyševskij sbornik, Tome 1 (2001) no. 1, pp. 25-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{CHEB_2001_1_1_a2,
     author = {I. M. Kozlov},
     title = {The mean value theorem of {I.\,M.~Vinogradov} for {Gaussian} numbers},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {25--39},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2001_1_1_a2/}
}
TY  - JOUR
AU  - I. M. Kozlov
TI  - The mean value theorem of I.\,M.~Vinogradov for Gaussian numbers
JO  - Čebyševskij sbornik
PY  - 2001
SP  - 25
EP  - 39
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2001_1_1_a2/
LA  - ru
ID  - CHEB_2001_1_1_a2
ER  - 
%0 Journal Article
%A I. M. Kozlov
%T The mean value theorem of I.\,M.~Vinogradov for Gaussian numbers
%J Čebyševskij sbornik
%D 2001
%P 25-39
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2001_1_1_a2/
%G ru
%F CHEB_2001_1_1_a2
I. M. Kozlov. The mean value theorem of I.\,M.~Vinogradov for Gaussian numbers. Čebyševskij sbornik, Tome 1 (2001) no. 1, pp. 25-39. http://geodesic.mathdoc.fr/item/CHEB_2001_1_1_a2/

[1] B.J. Birch, “Waring's problem in algebraic number”, Proc. Cam. Phil. Soc., 5 (1961), 449–459 | DOI | MR

[2] I.M. Vinogradov, Izbrannye trudy, Izd-vo AN SSSR, 1953

[3] O. Korner, “Über Mittelwerte trigonometrischen Zahlkorpern”, Math. Ann., 147 (1962), 205–309 | DOI | MR

[4] Y. Eda, “On the meanvalue theorem in an algebraic number field”, Jap. J. Math., 1967, 5–21 | MR | Zbl

[5] A.A. Karatsuba, Osnovy analiticheskoi teorii chisel, Nauka, M., 1976

[6] Hardy Wright, Introduction to the theory of numbers, Clarendon press, Oxford, 1954 | MR | Zbl

[7] I.M. Kozlov, “O raspredelenii prostykh chisel v nekotorykh arifmeticheskikh progressiyakh”, Vestn. Mosk. Un-ta., Ser. mat. mekh., 2002, no. 1 | Zbl

[8] A.I. Kostrikin, Vvedenie v algebru, Nauka, M., 1977

[9] E. Landau, Einfürung in die elementare und analytishe Theorie der algebraishen Zahlen und die Ideale, B.G. Teubner, Leipzig und Berlin, 1918 | Zbl