Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2001_1_1_a0, author = {Yu. N. Baulina}, title = {On the number of solutions of the equation $(x_1+\dots+x_n)^2=ax_1\dots x_n$ in the finite field $\mathbb F_q$ for $\mathrm{gcd}(n-2,q-1)=7$ and for $\mathrm{gcd}(n-2,q-1)=14$}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {5--14}, publisher = {mathdoc}, volume = {1}, number = {1}, year = {2001}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2001_1_1_a0/} }
TY - JOUR AU - Yu. N. Baulina TI - On the number of solutions of the equation $(x_1+\dots+x_n)^2=ax_1\dots x_n$ in the finite field $\mathbb F_q$ for $\mathrm{gcd}(n-2,q-1)=7$ and for $\mathrm{gcd}(n-2,q-1)=14$ JO - Čebyševskij sbornik PY - 2001 SP - 5 EP - 14 VL - 1 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2001_1_1_a0/ LA - ru ID - CHEB_2001_1_1_a0 ER -
%0 Journal Article %A Yu. N. Baulina %T On the number of solutions of the equation $(x_1+\dots+x_n)^2=ax_1\dots x_n$ in the finite field $\mathbb F_q$ for $\mathrm{gcd}(n-2,q-1)=7$ and for $\mathrm{gcd}(n-2,q-1)=14$ %J Čebyševskij sbornik %D 2001 %P 5-14 %V 1 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2001_1_1_a0/ %G ru %F CHEB_2001_1_1_a0
Yu. N. Baulina. On the number of solutions of the equation $(x_1+\dots+x_n)^2=ax_1\dots x_n$ in the finite field $\mathbb F_q$ for $\mathrm{gcd}(n-2,q-1)=7$ and for $\mathrm{gcd}(n-2,q-1)=14$. Čebyševskij sbornik, Tome 1 (2001) no. 1, pp. 5-14. http://geodesic.mathdoc.fr/item/CHEB_2001_1_1_a0/
[1] Carlitz L., “The number of solutions of some equations in a finite field”, Portug. Math., 13:1 (1954), 25–31 | MR | Zbl
[2] Baulina Yu. N., O chisle reshenii uravneniya $(x_1+\dots+x_n)^2=ax_1\dots x_n$ v konechnom pole, Rukopis dep. v VINITI 4.05.2001, No 1148-V2001, Mos. ped. gos. un-t., M., 2001, 38 pp.
[3] Lidl R., Niderraiter G., Konechnye polya, «Mir», M., 1988 | Zbl
[4] Williams K. S., Hardy K., Spearman B. K., “Explicit evaluation of certain Eisenstein sums file”, Number Theory, ed. R. A. Mallin, de Gruyter, Berlin, 1990, 553–626 | MR