On the number of solutions of the equation $(x_1+\dots+x_n)^2=ax_1\dots x_n$ in the finite field $\mathbb F_q$ for $\mathrm{gcd}(n-2,q-1)=7$ and for $\mathrm{gcd}(n-2,q-1)=14$
Čebyševskij sbornik, Tome 1 (2001) no. 1, pp. 5-14
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{CHEB_2001_1_1_a0,
author = {Yu. N. Baulina},
title = {On the number of solutions of the equation $(x_1+\dots+x_n)^2=ax_1\dots x_n$ in the finite field $\mathbb F_q$ for $\mathrm{gcd}(n-2,q-1)=7$ and for $\mathrm{gcd}(n-2,q-1)=14$},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {5--14},
year = {2001},
volume = {1},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2001_1_1_a0/}
}
TY - JOUR
AU - Yu. N. Baulina
TI - On the number of solutions of the equation $(x_1+\dots+x_n)^2=ax_1\dots x_n$ in the finite field $\mathbb F_q$ for $\mathrm{gcd}(n-2,q-1)=7$ and for $\mathrm{gcd}(n-2,q-1)=14$
JO - Čebyševskij sbornik
PY - 2001
SP - 5
EP - 14
VL - 1
IS - 1
UR - http://geodesic.mathdoc.fr/item/CHEB_2001_1_1_a0/
LA - ru
ID - CHEB_2001_1_1_a0
ER -
%0 Journal Article
%A Yu. N. Baulina
%T On the number of solutions of the equation $(x_1+\dots+x_n)^2=ax_1\dots x_n$ in the finite field $\mathbb F_q$ for $\mathrm{gcd}(n-2,q-1)=7$ and for $\mathrm{gcd}(n-2,q-1)=14$
%J Čebyševskij sbornik
%D 2001
%P 5-14
%V 1
%N 1
%U http://geodesic.mathdoc.fr/item/CHEB_2001_1_1_a0/
%G ru
%F CHEB_2001_1_1_a0
Yu. N. Baulina. On the number of solutions of the equation $(x_1+\dots+x_n)^2=ax_1\dots x_n$ in the finite field $\mathbb F_q$ for $\mathrm{gcd}(n-2,q-1)=7$ and for $\mathrm{gcd}(n-2,q-1)=14$. Čebyševskij sbornik, Tome 1 (2001) no. 1, pp. 5-14. http://geodesic.mathdoc.fr/item/CHEB_2001_1_1_a0/
[1] Carlitz L., “The number of solutions of some equations in a finite field”, Portug. Math., 13:1 (1954), 25–31 | MR | Zbl
[2] Baulina Yu. N., O chisle reshenii uravneniya $(x_1+\dots+x_n)^2=ax_1\dots x_n$ v konechnom pole, Rukopis dep. v VINITI 4.05.2001, No 1148-V2001, Mos. ped. gos. un-t., M., 2001, 38 pp.
[3] Lidl R., Niderraiter G., Konechnye polya, «Mir», M., 1988 | Zbl
[4] Williams K. S., Hardy K., Spearman B. K., “Explicit evaluation of certain Eisenstein sums file”, Number Theory, ed. R. A. Mallin, de Gruyter, Berlin, 1990, 553–626 | MR