On the number of solutions of the equation $(x_1+\dots+x_n)^2=ax_1\dots x_n$ in the finite field $\mathbb F_q$ for $\mathrm{gcd}(n-2,q-1)=7$ and for $\mathrm{gcd}(n-2,q-1)=14$
Čebyševskij sbornik, Tome 1 (2001) no. 1, pp. 5-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{CHEB_2001_1_1_a0,
     author = {Yu. N. Baulina},
     title = {On the number of solutions of the equation $(x_1+\dots+x_n)^2=ax_1\dots x_n$ in the finite field $\mathbb F_q$ for $\mathrm{gcd}(n-2,q-1)=7$ and for $\mathrm{gcd}(n-2,q-1)=14$},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {5--14},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2001_1_1_a0/}
}
TY  - JOUR
AU  - Yu. N. Baulina
TI  - On the number of solutions of the equation $(x_1+\dots+x_n)^2=ax_1\dots x_n$ in the finite field $\mathbb F_q$ for $\mathrm{gcd}(n-2,q-1)=7$ and for $\mathrm{gcd}(n-2,q-1)=14$
JO  - Čebyševskij sbornik
PY  - 2001
SP  - 5
EP  - 14
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2001_1_1_a0/
LA  - ru
ID  - CHEB_2001_1_1_a0
ER  - 
%0 Journal Article
%A Yu. N. Baulina
%T On the number of solutions of the equation $(x_1+\dots+x_n)^2=ax_1\dots x_n$ in the finite field $\mathbb F_q$ for $\mathrm{gcd}(n-2,q-1)=7$ and for $\mathrm{gcd}(n-2,q-1)=14$
%J Čebyševskij sbornik
%D 2001
%P 5-14
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2001_1_1_a0/
%G ru
%F CHEB_2001_1_1_a0
Yu. N. Baulina. On the number of solutions of the equation $(x_1+\dots+x_n)^2=ax_1\dots x_n$ in the finite field $\mathbb F_q$ for $\mathrm{gcd}(n-2,q-1)=7$ and for $\mathrm{gcd}(n-2,q-1)=14$. Čebyševskij sbornik, Tome 1 (2001) no. 1, pp. 5-14. http://geodesic.mathdoc.fr/item/CHEB_2001_1_1_a0/

[1] Carlitz L., “The number of solutions of some equations in a finite field”, Portug. Math., 13:1 (1954), 25–31 | MR | Zbl

[2] Baulina Yu. N., O chisle reshenii uravneniya $(x_1+\dots+x_n)^2=ax_1\dots x_n$ v konechnom pole, Rukopis dep. v VINITI 4.05.2001, No 1148-V2001, Mos. ped. gos. un-t., M., 2001, 38 pp.

[3] Lidl R., Niderraiter G., Konechnye polya, «Mir», M., 1988 | Zbl

[4] Williams K. S., Hardy K., Spearman B. K., “Explicit evaluation of certain Eisenstein sums file”, Number Theory, ed. R. A. Mallin, de Gruyter, Berlin, 1990, 553–626 | MR