@article{CGTM_2024_17_a6,
author = {Ma Ke and Elena Gubar},
title = {Impact of urban travel rates on epidemic spread and basic reproduction number},
journal = {Contributions to game theory and management},
pages = {59--73},
year = {2024},
volume = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CGTM_2024_17_a6/}
}
Ma Ke; Elena Gubar. Impact of urban travel rates on epidemic spread and basic reproduction number. Contributions to game theory and management, Tome 17 (2024), pp. 59-73. http://geodesic.mathdoc.fr/item/CGTM_2024_17_a6/
[1] Almeida, R., “Analysis of a fractional SEIR model with treatment”, Applied Mathematics Letters, 84 (2018), 56–62 | DOI | MR
[2] Anastassopoulou, C., Russo, L., Tsakris, A., Siettos, C., “Data-based analysis, modelling and forecasting of the COVID-19 outbreak”, PloS one, 15:3 (2020), e0230405 | DOI
[3] Barabási, A. L., “Network science. Philosophical Transactions of the Royal Society A: Mathematical”, Physical and Engineering Sciences, 371:1987 (2013), 20120375 | MR
[4] Bentout, S., Chekroun, A., Kuniya, T., “Parameter estimation and prediction for coronavirus disease outbreak 2019 (COVID-19) in Algeria”, AIMS Public Health, 7 (2020), 306–318 | DOI
[5] Biggerstaff, M., Cauchemez, S., Reed, C., Gambhir, M., Finelli, L., “Estimates of the reproduction number for seasonal, pandemic, and zoonotic influenza: a systematic review of the literature”, BMC infectious diseases, 14:1 (2014), 1–20 | DOI
[6] Cai, Y., Kang, Y., Wang, W., “A stochastic SIRS epidemic model with nonlinear incidence rate”, Applied Mathematics and Computation, 305 (2017), 221–240 | DOI | MR
[7] Cantó, B., Coll, C., Sánchez, E., “Estimation of parameters in a structured SIR model”, Advances in Difference Equations, 2017, 1–13 | MR
[8] Diaz, P., Constantine, P., Kalmbach, K., Jones, E., Pankavich, S., “A modified SEIR model for the spread of Ebola in Western Africa and metrics for resource allocation”, Applied mathematics and computation, 324 (2018), 141–155 | DOI | MR
[9] Diekmann, O., Heesterbeek, J. A. P., “Mathematical epidemiology of infectious diseases: model building”, Analysis and interpretation, v. 5, 2000 | MR
[10] Diekmann, O., Heesterbeek, J. A. P., Metz, J. A., “On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations”, Journal of mathematical biology, 28 (1990), 365–382 | DOI | MR
[11] Gubar, E., Taynitskiy, V., Fedyanin, D., Petrov, I., “Quarantine and Vaccination in Hierarchical Epidemic Model”, Mathematics, 11 (2023), 1450 | DOI
[12] Gubar, E., Taynitskiy, V., Dahmouni, I., “The impact of fake news on infection dynamics in Pandemic control: An evolutionary SIR model”, IFAC-PapersOnLine, 56:2 (2023), 1778–1783 | DOI
[13] Lloyd, A. L., May, R. M., “Spatial heterogeneity in epidemic models”, Journal of theoretical biology, 179:1 (1996), 1–11 | DOI
[14] Pandey, G., Chaudhary, P., Gupta, R., Pal, S., SEIR and Regression Model based COVID-19 outbreak predictions in India, 2020, arXiv: 2004.00958
[15] Pang, L., Liu, S., Zhang, X., Tian, T., Zhao, Z., “Transmission dynamics and control strategies of COVID-19 in Wuhan, China”, Journal of Biological Systems, 28:03 (2020), 543–560 | DOI | MR
[16] Paul, S., Mahata, A., Ghosh, U., Roy, B., “Study of SEIR epidemic model and scenario analysis of COVID-19 pandemic”, Ecological Genetics and Genomics, 19 (2021), 100087 | DOI | MR
[17] Peng, L., Yang, W., Zhang, D., Zhuge, C., Hong, L., Epidemic analysis of COVID-19 in China by dynamical modeling, 2020, arXiv: 2002.06563 | MR
[18] Pequeno, P., Mendel, B., Rosa, C., Bosholn, M., Souza, J. L., Baccaro, F., ... and Magnusson, W., “Air transportation, population density and temperature predict the spread of COVID-19 in Brazil”, PeerJ, 8 (2020), e9322 | DOI
[19] Poole, L., Seasonal influences on the spread of SARS-CoV-2 (COVID19), Causality, and forecastabililty (3-15-2020) (March 15, 2020)
[20] Prasse, B., Achterberg, M. A., Ma, L., Van Mieghem, P., “Network-inference-based prediction of the COVID-19 epidemic outbreak in the Chinese province Hubei”, Applied Network Science, 5 (2020), 1–11 | DOI
[21] Qian, X., Ukkusuri, S. V., “Connecting urban transportation systems with the spread of infectious diseases: A Trans-SEIR modeling approach”, Transportation Research Part B: Methodological, 145 (2021), 185–211 | DOI
[22] Rahman, B., Sadraddin, E., Porreca, A., The basic reproduction number of SARS-CoV-2 in Wuhan is about to die out, how about the rest of the World?, Reviews in medical virology, 30:4 (2020), e2111 | DOI
[23] Ribeiro, H. V., Sunahara, A. S., Sutton, J., Perc, M., Hanley, Q. S., “City size and the spreading of COVID-19 in Brazil”, PloS one, 15:9 (2020), e0239699 | DOI
[24] Rocha Filho, T. M., Moret, M. A., Chow, C. C., Phillips, J. C., Cordeiro, A. J. A., Scorza, F. A., Almeida A.-C.G., and Mendes, J. F. F., “A data-driven model for COVID-19 pandemic-Evolution of the attack rate and prognosis for Brazil”, Chaos, Solitons and Fractals, 152 (2021), 111359 | DOI
[25] Saito, M. M., Imoto, S., Yamaguchi, R., Sato, H., Nakada, H., Kami, M., Miyano, S., Higuchi, T., “Extension and verification of the SEIR model on the 2009 influenza A (H1N1) pandemic in Japan”, Mathematical biosciences, 246:1 (2013), 47–54 | DOI | MR
[26] Sattenspiel, L., Dietz, K., “A structured epidemic model incorporating geographic mobility among regions”, Mathematical biosciences, 128:1–2 (1995), 71–91 | DOI
[27] Tang, B., Wang, X., Li, Q., Bragazzi, N. L., Tang, S., Xiao, Y., Wu, J., “Estimation of the transmission risk of the 2019-nCoV and its implication for public health interventions”, Journal of clinical medicine, 9:2 (2020), 462 | DOI
[28] van den Driessche, P., Watmough, J., “A simple SIS epidemic model with a backward bifurcation”, Journal of Mathematical Biology, 40:6 (2000), 525–540 | DOI | MR
[29] Van den Driessche, P., Watmough, J., “Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission”, Mathematical biosciences, 180:1–2 (2002), 29–48 | MR
[30] Yang, Z., Zeng, Z., Wang, K., Wong, S. S., Liang, W., Zanin, M., Liu P., Cao, X., Gao Zh., Mai, Zh., Liang, J., Liu, X., Li, Sh., Li, Y., Ye, F., Guan, W., Yang, Yi., Li, F., Luo, Sh., Xie, Yu., Liu, B., Wang, Zh., Zhang, Sh., Wang, Ya., Zhong, N., He, J., “Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions”, Journal of thoracic disease, 12:3 (2020), 165 | DOI | MR